. " PDF Download
‘.) e DIGITAL -
*:} . et acmopen L 10563.10576.pdf
Check for e LIBRARY @ G C P) 19 January 2026

updates Total Citations: 3
‘) Total Downloads: 423

{p Latest updates: https://dl.acm.org/doi/10.1145/10563.10576
Published: 01 February 1986

ARTICLE Citation in BibTeX format
Help texts vs. help mechanisms: A new mandate for documentation
. SIGDOCS5: Fourth International
writers Conference on Systems Documentation
June 18 - 21, 1985
NATHANIEL SOLOMON BORENSTEIN, Carnegie Mellon University, Pittsburgh, PA, United New York, Ithaca, USA
States

Conference Sponsors:
SIGDOC

Open Access Support provided by:

Carnegie Mellon University

SIGDOC '85: Proceedings of the 4th annual international conference on Systems documentation (February 1986)
https://doi.org/10.1145/10563.10576
ISBN: 0897911865

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/10563.10576
https://dl.acm.org/doi/10.1145/10563.10576
https://dl.acm.org/doi/10.1145/contrib-81100065714
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/institution-60027950
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F10563.10576&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/doc
https://dl.acm.org/conference/doc
https://dl.acm.org/sig/sigdoc
http://crossmark.crossref.org/dialog/?doi=10.1145%2F10563.10576&domain=pdf&date_stamp=1986-02-01

Help Texts vs. Help Mechanisms:

A New Mandate for Documentation Writers

NATHANIEL S. BORENSTEIN

Information Technology Center
Carnegie-Mellon University

Abstract

To compare different methods of accessing and presenting on-
line help, controlled experiments were conducted. Several
different help systems were compared, including a natural
language help system and a human tutor. The results indicate
that, while varying the help mechanism may have some effect on
learning, its importance is greatly overshadowed by the simple
quality of the help texts being presented. Even for on-line help,
good writing seems to be the most important part of helping the
user, far more important than elaborate or sophisticated
mechanisms.

1. Introduction

Historically, little attention has been paid to on-line help
mechanisms. They have been built, if at all, as afterthoughts,
last-minute additions to complex software systems. In recent
years, however, they have begun to be addressed more seriously.
Several authors have made surveys of on-line help systems
[1, 10, 17, 19] or have made genuine attempts to carefully design
such systems [3, 5,6, 7,9, 12, 13, 14, 20]. Though these surveys
and design projects have greatly helped to define the state of the
art in on-line help, they have provided precious little hard data
about the usefulness of on-line help itself, nor about the genuine
advantages and disadvantages to the various mechanisms that
have been used. Only Magers [11] actually conducted controlled
experiments, which studied the effect of simple changes in a help
system and the underlying application interface. Yet recent
developments in evaluating user interfaces, such as the Roberts
and Moran methodology for evaluating text editors
[2, 15, 16] have made it clear that such evaluation is both
possible and desirable.

The experiments discussed here were conducted as part of the
author's doctoral dissertation on on-line help systems [1]. The
goal of that research was 1o experimentally evaluate the state of
the art in help systems, and to try to find out which qualities make
a help system most useful.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and.notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-186-5/86/0600/0078 $00.75

The research consisted of three phases. In the first phase, a
thorough survey of previous work on help systems was
conducted, and extensive surveys and protocols were taken of
actual users of existing help systems.

From these explorations, a prototype help system was designed
in the second phase of the research. This system was designed
to fairly approximate the state of the art in help systems; no
existing help system was used because no single system was
available which incorporated enough of the features which had
been found in some help system. That is, no help system could
be found that availed itself completely of even those techniques
which had been documented in the published literature. The

prototype system, known as ACRONYM, will be described briefly
in Section 2.

In the third phase of the research, controiled experiments were
conducted to compare the prototype help system with other help
systems and learning conditions, with surprising results. The
experimental methodology and the most relevant results of the
experiments will be described in Sections 3 and 4.

2.The ACRONYM Help System

The prototype help system designed for these experiments was
called ACRONYM. ACRONYM was a help system for UNIX, which
knew about most of the UNIX' utility programs. ACRONYM's
mechanisms are described extensively elsewhere [1], but a brief
description will be provided here.

ACRONYM ran on a VAX 11/750, running UNIX and Emacs [8].
As a terminal, it used a Xerox Alto computer running a terminal
emulator, which gave a 60 line screen and supported pointing
with a mouse. ACRONYM ran with the user’s screen divided into
three windows, as pictured in Figure 1. The top window was the
“Help texts” window, in which the system displayed the actual
help texts. The second window was the ‘‘Help menu” window, in
which the system provided a menu of topics for further help
requests. The bottom window was a ‘“‘Commands” (sheli)
window, in which the user actually typed commands and viewed
their output. Because a 60-line terminal was used, each window
was nearly as large as a standard video display terminal’s screen.

ACRONYM provided help via four basic mechanisms. First of
all, it provided context-dependent help without any initiative on
the user’'s part. Each time the user pressed the SPACE key, to
separate words of his command, the system automatically
updated the two help windows to refiect the user’'s new context.
Thus, if the user typed “Is”, the UNIX command to list the files in
a directory, ACRONYM would put an explanation of the function
and options of the “is’’ command in the top window, and a menu
of related topics in the middle window.

TUNIX is a trademark of ATAT Bell Laboratories

Second, ACRONYM allowed users to invoke further context.
dependent help by pressing a single key, “?". This would give
help in a manner similar to the automatic help provided when
SPACE was pressed, but often more specifically geared to the
current context. (This help included, for example, file name
completion, so that a user could type part of a file name, press
“?", and see the possible completions of that name.)

Third, ACRONYM provided menu help using a mouse. Users
simply pointed at any item in the menu window and préssed any
key on the mouse, and the help and menu windows were updated
accordingly.

Finally, ACRONYM provided key word help. Users could, at any
time (even in the middle of a command line) type “help”, followed
by a key word, and ACRONYM would update its help window and
menu window in accordance with the key word. if the key word
was unambiguous, (e.g. "help Is"), the appropriate help would be
displayed in the help text window and a menu of relevant items
would appear in the menu window. If the help request was
ambiguous, a message explaining this fact appeared in the top
window, and a menu of possible interpretations would appear in
the menu window. Thus, the intended topic could usually be
selected with the mouse.

ACRONYM's database was designed so that most texts and
menus would fit in the windows provided. However, when this
was not the case (for example, “help file” provided a relatively
long list of related topics in the menu window), scroll buttons
were provided on the screen, so that each window could be
scrolled independently backwards or forwards by pointing with
the mouse.

Texts used in the ACRONYM database and in the hybrid system
described below came from the book A Practical Guide to the
UNiX System by Mark Sobell, and were reproduced with the
consent of the author and publisher [18].

3. The Experimental Method

In each of two parallel experiments, a group of subjects with
similar backgrounds and experience in using computers were
given a set of tasks to perform on UNIX. In one experiment, none
of the subjects had ever used UNIX before, but all had performed
similar tasks on the TOPS-20 operating system. The second
experiment studied UNIX experts; naturally they were given a
different set of tasks.

The independent variable in each experiment was the method
by which the necessary help information was obtained. Each
subject used the standard CMU UNIX heip system (see below)
during half the experiment, and used one of the other help
methods during the other half. (The use of the standard system
as a baseline condition was designed to reduce the effects of
subject variation.) These were balanced so that an equal number
of people used each of the non-standard help systems for each

half of the experiment.

The dependent variable measured was the time it took to
successfully execute each task. The experiments were
videotaped, and times were computed from the time stamp on the
videotape.

In order to limit the time of the experiment and to insure that no
subject got bogged down with a single task early in the
experiment, a cap of ten minutes was placed on task execution
time. The tasks were small enough that this was enough time for
nearly all subjects on nearly all of the tasks. (The task selection
and the ten minute cap were the result of a series of earlier pilot
experiments designed to select tasks of appropriate size and
difficulty.) When a subject failed to complete a task in ten
minutes, the experimenter showed him the right solution (the

79

right way to get the task done) and then allowed him to go on to
the next task.

There were 22 tasks, divided evenly into two comparable sets.
At the midpoint of the experiment, the subjects were shown a
different way of getting help, and were required to use that
second method during the second half of the experiment. The
task order was fixed throughout the experiment; the nature of the
tasks themselves imposed at least a partial ordering, making it
difficuit to vary the task order in any reasonable way. A summary
of the tasks for the experiments is given in Table 1.

Five different help systems were studied.
summarized in Table 2, and described in detail below.

These are

3.1. The ‘“‘Baseline’ Help System: man and key

The “baseline” help system, HO, which each subject used for
either the first or second half of the experiment, is the standard
help system used on the CMU UNIX systems. This system
consists of two commands, man and key. The man command is

used to print the complete UNIX manual entry for a given
command. The key command can be used to find out about
unknown commands; users type ‘‘key file”, and the system prints
a single descriptive line for each manual entry that it finds for the
key word “file”. (On most UNIX systems, the “key" command is
absent, but a similar “apropos” or ‘‘man -k” command often
exists.)

This system has several problems. First, the texts are of
extraordinarily poor quality, by almost any standard. Second, the
key word lookup is done in a very stupid manner: a key word
matches a manual entry only if the word is an exact substring of
the first line of that manual entry. Third, the man command, for
printing cut manual entries, is very stow because it runs the entire
manual entry through the nroff text processing utility before
printing it out.

Subjects using the baseline system were supplied with a
physical copy of the UNIX manual, so that they did not actually
have to sit still and wait for the man command to perform. They
were also supplied with a booklet titled “UNiIX for Beginners”,
which is generally supplied as' part of the standard UNIX
documentation for new users.

3.2, The Hybrid System

The second help condition studied, H,. was a hybrid system
that consisted of the same mechanisms used in the standard
system (Ho)' but with better texts. (These texts were derived from
the ACRONYM help system described in Section 2, and hence
came in large part from Sobell’s book [18).) The mechanisms
were the same as the standard system at the user level, but
performed better -- the man command was faster, and the key
command, though somewhat slower, did a much more thorough
search for key words. This hybrid system is thus best thought of
as the standard system “done right.”” Users of the hybrid system
received exactly the same instruction sheet and supplementary
materials that were given with the baseline system. Of course,
the paper copy of the manual which was given to these subjects
contained the improved, non-standard texts.

3.3. The ACRONYM Help System

Help condition H2 was the ACRONYM prototype help system,
described in Section 2.
3.4. The Human Tutor

Help condition Hs was a human tutor. Subjects with this help
condition were allowed to ask any question of the tutor, but were
not allowed to rely on the tutor's prior knowledge of what the
problem was. Hence, all they had to do was to state the problem

clearly and in their own words in order to have the solution
explained to them. When in doubt, the tutor tried to consistently

err, if at all, on the side of being too helpful, so that this help
condition may be regarded as an “idealized” human tutor.

3.5. Simulated Naturai Language Help

The final help condition studied, H,, was a simulated natural
language help system. Subjects with this help condition were
allowed to ask any question in natural language by typing it on
their keyboard; the responses were determined by the
experimenter in the next room, whose participation was not
known to the subjects and came as a surprise to ali of them when
the deception was revealed after the experiment. Special support
software aliowed the experimenter to react quickly to each help
request by sending the user a small portion of the ACRONYM
database; thus the experimenter acted as an English-to-
ACRONYM translator. As with the human tutor, the translator
tried to err, if at all, in the direction of being too helpful.

4. Experimental Results

The experiments yielded a highly complex set of data, due to
the fact that there were differences due not only to help system
variation and individual subject variation, but also to the variation
of task difficully. (Some of the tasks took less than a minute to
complete, on average, while others took several times as long.) In
order to obtain statistically significant results, a regression

analysis was used, the full details of which are reported in the’

author's dissertation [1]. Here, the results will be summarized but
not detailed.

4.1. Novice Results

The novice experiment, as expected, showed the human tutor
to be the best help system, and the standard (baseline) system to
be the worst. The other three systems -- ACRONYM, the hybrid,
and the simulated English help system -- all performed about
equally well, about halfway between the other two systems. The
difference between the standard system and these three, and the
difference between these three and the human tutor, were
reasonably significant (p < .05 for most of the differences, slightly
higher for the difference between ACRONYM and the tutor).

Figure 2 shows the distribution of novice timings for each help
system. While this graph makes it seem likely that finer
distinctions can be made -- e.g. that the natural tanguage system
is better than ACRONYM, and that ACRONYM is slightly better
than the hybrid -- the data does not support these conclusions
with a high level of significance.

Although some second-order differences are apparent from a

task-by-task analysis (not included here) for example,
ACRONYM appears to perform best on the hardest task, and to
actually perform extremely poorly on the simplest tasks -- one
overall result is striking: the three systems that use the same
good help texts perform nearly equally well, far surpassing the
simple baseline system. Indeed, just comparing the baseline
system to the hybrid shows that by improving the texts and
indexing, nearly half the time difference between the standard
system and an idealized human tutor was eliminated.
4.2. Expert Results

In the expent study, the natural language condition was not
tested. Of the remaining four help systems, once again the
human tutor performed very well and the baseline system
relatively poorly, although the difference was not as great as with
the novices. Like the novices, the experts responded very well to
the improved texts in the hybrid system -- so well, in fact, that
there was no significant difference between the human tutor and
the hybrid help system!

20

The experts' response to ACRONYM was very different,
however. Using ACRONYM, the experts performed quite poorly.
In fact, expert performance with ACRONYM was not significantly
better than their performance with the standard (baseline) help
system.

This result, though at first surprising, seems to have a simple
explanation. The UNIX experts studied were people who have
been using man and key for years. These commands are second
nature to them. (In fact, Draper [4] has suggested that familiarity
with the help system is the only reasonable criterion for assessing
expertise in a system like UNIX.) By improving the texts and
indexing without changing the mechanism, the hybrid system
allowed them to leverage their previous knowledge, and to
perform spectacularly well. When new access mechanisms were
substituted for the old, as in ACRONYM, the benefit of the new
texts was offset by the hurdle of requiring the learning of a new
help system.

The distribution of Expert times is shown in Figure 3.

5. Conclusions

The most important result of these experiments is support for
the claim that quality of writing is the most important single
aspect of on-line help systems. This is, of course, something
which system documenters have believed for a long time, but it
has been difficult to convince the technically-minded of this
belief. The simple fact, however, is that simply improving the text
and indexing of the standard UNIX help system yielded a
tremendous improvement in the rate at which novices learned to
perform a fixed set of tasks. (Very roughly, they averaged 1
minute per task with a tutor, 2 minutes per task with the improved
texts, and 3 minutes per task with the standard system.)

These results should not be interpreted as saying that help
mechanisms are not important. For one thing, the data
suggested -- but could not prove -- that the more sophisticated
mechanisms did provide small improvements in learning times,
especially on the hardest tasks. Moreover, a subjective
evaluation, not reported here, indicated that users generaily
preferred the help mechanisms in ACRONYM, even if those
mechanisms didn't really improve performance. Since it is such
subjective impressions that sell software, this is of no small
importance. Nonetheless, these experiments do indicate that
anyone who wants to build a really good help system can not
afford to neglect getting good writers to produce good texts, and
that the production of such texts should be a major goal of any
on-line help project. In short, when you move documentation
from paper to screens, very little changes: form, though
important, remains clearly secondary to content.

Acknowledgements

Jim Morris, Dick Hayes, Phil Hayes, Kamila Robertson, and
Frank Wimberly advised and helped me throughout this research.
| am deeply grateful to them, and to the more complete list of

people to be found in my dissertation. | also want to thank the
General Electric Foundation and the National Science
Foundation for their support during my graduate student career,
and Advanced Programming Resources, of Columbus, Ohio, for
their continuing support in the ongoing development of the
ACRONYM help system.

References

[1] Borenstein, Nathaniel S. The Design and Evaluation of
On-line Help Systems. PhD thesis, Carnegie-Meflon University,
1985.

[2] Borenstein, Nathaniel. The Evaluation of Text Editors: A
Critical Review of the Roberts and Moran Methodology Based on
New Experiments. In Procedings of CHI '85. 1985.

[3] Bramwell, Bob. BROWSE: An On-line Manual and System
Without an Acronym. SIGDOC Newsletter , 1984.

[4] Draper, Stephen W. The Nature of Expertise in UNIX. HMI
Project, University of California at San Diego, March, 1984.

[5] Fenchel, Robert S. Integral Help for Interactive Systems.
PhD thesis, UCLA, 1980.

6] Finin, Timothy W. Providing Help and Advice in Task-
Oriented Systems. in IJCAI 83 Proceedings, pages 176-178,
1983.

71 Fischer, Gerhard, Andreas Lemke, and Thomas Schwab.
Knowledge-based Help Systems. In Proceedings of CHI '85,
pages 161-167. 1985.

(8]

[9] Hayes, Philip J. Uniform Help Facilities for a Cooperative
User Interface. In National Computer Conference Proceedings,
pages 469-474. AFIPS, 1882,

[10] Houghton, Raymond C., Jr. Online Help Systems: A
Conspectus. CACM 27(2):126-133, February, 1984.

[11] Magers, Celeste S. An Experimental Evaluation of On-line
Help tor Non-Programmers. In CH/ ‘83 Proceedings, pages
,277-281, 1983.

Gosling, James. UNIX Emacs Manual 1983.

[12] Price, Lynne A. Thumb: An Interactive Tool for Accessing
and Maintaining Text. /EEE Transactions on Systems, Man, and
Cybernetics SMC-12(2):155-161, March/April, 1982,

[13] Relles, Nathan and Lynne A. Price. A User Interface for
Onfine Assistance. In Procedings of the Fiith Conference on
Software Engineering, pages 400-408. 1981,

[14] Relles, Nathan, and Norman K. Sondheimer. A Unified
Apporach to Online Assistance. In National Computer
Conference Proceedings, pages 383-387. AFIPS, 1981.

{15] Roberts, Teresal. Evaluation of Computer Text Editors.
PhD thesis, Stanford University, 1979.

[16] Roberts, Teresa L. and Thomas P. Moran. The Evaluation
of Text Editors: Methodology and Empirical Results. CACM
April, 1983.

[17] Shneiderman, Ben. Human Factors Issues of Manuals,
Oniine Help, and Tutorials. Technical Report CS-TR-1446,
Department of Computer Science, University of Maryland,
September, 1984,

(18] Sobell, Mark. A Practical Guide to the UNIX System. The
Benjamin/Cummings Publishing Company, Menlo Park,
California, 1984,

[19] Sondheimer, Norman K. and Nathan Relles. Human
Factors and User Assistance in interactive Computing Systems:
An Introduction. IEEE Transactions on Systems, Man, and
Cybernetics SMC-12(2):102-107, March-April, 1982.

[20] Wilensky, Robert. Talking to UNIX in English: An
Overview of an On-line UNIX Consultant. A/ Magazine 5(1):29-39,
Spring, 1984.

Table 1: Summary of Tasks in the Experiments

Order Intermediate task (solution)

T1 Time of day (date. uptime, whenis)
'!'2 Change password (passwd}

TJ List files (Is)

T4 View file (cat, pr. more)

Ts Copy file (¢cp)

T6 Rename file (mv)

T7 Print fite on dover (cz)

TB Delete file reversibty (del)

T9 List delcted files (Isd)

T]0 Restore deleted file (kndel)

T11 Direct message to another user {send, write)
T12 Print calendar (cal)

Tl 3 View file backwards (rew)

'1'l 4 Print working directory (pwd)

T15 Make new directory (mkdir)

T 16 Change directory (cd, chdir)

T17 Move file (my)

T18 Delete empty directory (rmdir, rm -1}

T19 Delcte full directory (rm -r)

T20 List current users (u, users, finger. who, w}
T21 Find string in file (grep)

T22 Send mail (mail)

Expert Task (solution)

Print on dover specifying font (cz-f)

Sort in reverse order (sort -r)

List files by time modified {is -0

Change protection as specificd (chmod o-r, chmod 640)
Delete file reversibly (del)

List deicted files (Isd)

Restore deicted file (undel)

Find i-number (¥s-i)

Set sctuid bit (chmod u+ s, chrmod 4xxx)

Send to user logged in twice (send -all, send wser tiyxx)
List processes for all users (ps @)

Print file on dover with hcader (cz-4 “..")

Sort, ignoring capitalization (sorr -f)

Cancet all pending mait tequests (mailq -retain)

View only the printable strings in a binary file (srrings)
Execute remote command (cmuftp r g - = “Jdate”)
Undcicte old version of file (undel -g)

Retrieve file from Onyx server

(ecp -u guest guest "fontyx)CAlroDocsochat.tty” chat try)
Send to user on remote machine

(rsend user@host, send user@host)

List processes on terminal ttypa (ps ipa)

List process with no terminal (ps 1p?)

List total space occupied by deleted files (isd -¢)

81

Table 2: Help Systems Studied in the Experiment

Help System Description

Standard CMU UNIX help system (man/key)

H

H(I) Hybrid system: man/key with texts from ACRONYM
H2 Fully implemented prototype system (ACRONYM)
H3 Ever-present human tutor

H 4 Simulated natural language help system.

Figure 1: Sample view of ACRONYM’s screen

You may now type one or more file names in which to search. If you don't
type any file names. the standard input will be searched. When you have
typed all the file names you want to search, press the RETURN key.

-- Help texts --

** You may type any file name now, 1ncluding any of the following:
filet file2

filed filedummy

** grep/egrep/fgrep: Search for.a pattern in a file.
** Summary of the grep command

** Options for the grep command

¢+ Arguments for the grep command

s* pAdditional notes on the grep command

*s Examples of the grep command

** What is a file?

*+ Wwhat is a string?

¢+ What is a regular expression?

*+ wWhat the RETURN key is and what 1t means

-- Help menus -- PRESS HERE to move forward

$ grep chocolate file?

Press 7 for context-dependent help, OEL to exit. Press HFRE for basic help.

82

Figure 2: Distribution of Average Novice Timings

O
Q
Q

&= —- ¢ Hybrid
IR % ACRONYM
. a— ~4a Tutor
» x — —x English

Average time in seconds
&
Q
Q

s x w
& o A—A--a-—&~a—~£‘*-h.—.,_ E__Q.Q

A N n

o——e@ Baseline (man/key)

$
B E e e R

0 2 4 6 & 10 12 14 16 18 20 22
Task # (different order for each help system)

Figure 3: Distribution of Average Expert Timings

% 6009 o———@ Baseline {man/key)
2 O—-—-© Hybrid
0o Fr RSP -* ACRONYM
8 500} A— -A Tutor
]
-
o 400
E
-— T
g 300
®
LS
e
< 200
100

0 5 10 15 20

25
Task # (different order for each help system)

33

