
CMU-CS-85-151

The Design and Evaluation
of On-line Help Systems

Nathaniel S. Borenstein

April 27, 1985

Submitted in partial fulfillment of file requirements for the degree of

Doctor of Philosophy in Computer Science at Carncgie-Nlellon University

Copyright © 1985 Nathaniel S. Borenstein

This research was sponsored by a Graduate Fellowship from the National Science Foundation, and

by a Forgivable Loan from the General Electric Foundation. The views and conclusions contained

in this document are those of the author and should not be interpreted as being the views and con-
clusions of the National Science Foundation or of General [-lectric.





To Debbie and Stan Borenstein

I would repay the bounty they have given me,
but it is as the sky: it can never be approached.

-- Huston Smith [110]





IJST 01" TABI.I_S vii

List of Tables

"Fable6-1: Summary of Tasks in the Experiments 74
Table 6-2: Help Systems Studied in the Experiments 79
Table 7-1: Summary of Novice Experiments 87
Table 7-2: Summary of Expert Experiments 87
Table 7-3: Regression Analysis of Novice Data 89
Table 7-4: Regression Analysis of Expert Data 90
Table 7-5: Comparison of Three Measures of Novice Variation 91
Table 7-6: Comparison of Three Measures of Expert Variation 91
Table 7-7: Readability Analyses &the Two UNIX Manuals 93
"Fable7-8: IAst of Novice Tasks, Ordered as in Figure 7-5 99
Table 7-9: List of Expert Tasks, Ordered as in Figure 7-6 100
Table 7-10: Novice Regression Analysis, Omitting Within-Subjects Comparisons 104
Table 7-11: Expert Regression Analysis, Omitting Within-Subjects Comparisons 105
"Fable 7-12: The Effect of No_ice Subject Variation 106
"Fable 7-13: The Effect of Expert Subject Variation 106
Table 7-14: Short-term Retention of Solutions by Novices 107
Table 7-15: Short-term Retention of Solutions by Experts 109
Table 7-16: Subjective User Preferences: ACRONYM versus the hybrid 109
Table E-l: Meanings of Indicator Variables in Toy Regression Example 266



AI_SrRACT l

Abstract

On-line help is a vital part of nearly every computer system of any significant size, yet it is poorly
understood and generally poorly iinplemented. The primary goal of this research was to discover as

much as possible about how on-line help systems should be built. Several restllts are presented in the
thesis.

First, the feasibility of easily building more general and powerful help systems than are

commonly available is demonstrated. A prototype system, inchiding nearly all the feattu'es inch:ided

in any real-world help system, and integrating them in a Inanner not found in any such system, was

built in just a few months without any spectacular tricks of implementation. The prototype system

runs well and quickly, even with a very large database of help information, so that there is simply no
reason not to expect practical help systems to live up to its standards.

Second, controlled experiments comparing _arious alternative help systems were conducted.

These expcriments suggest that the quality of help texts is far more important than the mechamsms

b_, which those texts :ue accessed. The experiments also st_ggest that, despite the well-documented

fact that people read and comprehend better fi'om printed texts than fl'om computer screens, it is at

least possible to compensate for this 12tct tlarough sophisticated help access mechanisms. Thus,
on-line help with t_o printed manual may be at least as useful as a more traditional manual-based

system, and there are reasons to suspect that it can be even better. Additional experiments, using a

simulated natural language interface, cast doubt on the usefulness of natural language in a help
system.

In addition to the concrete results summarized above, the thesis makes several other

contributions. A general taxonomy of on-line help systems is developed, and a survey of the

literature on help systems relates existing help systems to that taxonomy. Further, the design and

evaluation of help systems is considered as an example of the more general problem of designing and
evaluating user interl:,:_ces. 'l'he methodology facilitates the evolution of such interfaces with a

minimum of attention to the details of implementation and expeiimentation. Finally, a potpourri of
practical, sometimes anecdotal infi_rmation likely to be of interest to ffiture help system designers is

collected in a practitioner's summary, and related topics ripe for fflrther research are described in a
researcher's agenda.





ACKNOWI.I:,I)Gl!MF.NTS 3

Acknowledgements

I owe so many people a debt of gratitude for their help in my studies that I had begun to fear that
the acknowledgements would be tile longest section of my thesis. This t_ar notwithstanding, I would
like to thank the following people:

My advisor, Jim Morris, has been everything one could want in an advisor; without his
encouragement, I would be in a gutter drinking cheap wine today.

The other members of my committee, Dick Hayes, Phil Hayes, and Frank Wimberly, have been
invaluable to me. Their sharp insights and criticisms have been balanced with well-timed
encouragement, and I am forever in their debt as well.

Kamila P,obertson has also contributed more to me than I can repay. It was with her help and
encouragement that l took the fateful step away fi'om the orthodoxy of Computer Science and into
the uncharted world of t]uman Factors.

1owe a special debt of gratitude to my friends in the Statistics l)epartment, Yves Thibaudeau and
Rob Kass, who saved me when i got over my head in regression analysis and other csoterica of their
noble science.

I would like to give special thanks to Mark Sobell and his publisher for permission to use large
portions of their excellent introductory text on UNIX 1. Being able to use these texts saved me
months, if not years, of work, and helped guarantee the objectivity of my experiments. Those
experiments provided confirmation of one thing I had believed from the start, namely that Sobell's
text is truly a top-quality introduction to UNIX. I recommend it highly.

Additionally, 1 would like to thank the many people who helped me in small ways and large
during the course of this research: Mike Accetta, I)avid Axler, Diana Bajzek, Rene Banares, Keith
Barrett, Michael Bergrnan, Bob Bramwell, Benjamin Britt, Peter Brown, Jean Brule, Jaime Carbonell,
Stuart Card, Tim Carlin, Jack Carroll, 1)avida Charney, Margaret Christensen, Don Cohen, Tim
Curry, John l)aleske, Mark l)ay, Walt I)oherty, Marc I)onner, Tom I)uffy, Ivor I)urham, Rex
I)wyer, Jennifer I)ykernan, Carl Ebeling, Jeff Eppinger, David Evans, Craig Everhart, Gary
Feldman, Kathy Ferraro, Tiln Finin, Alan Fisher, Ed Frank, Bob Frederking, Lionel Galway, David
Garlan, Dick Glenn, James Gosling. John Gould, Walt Haas, Leonard Hamey, Fred Hansen, Peter
Hibbard, Steve Hill, Susan Homer, Adele Howe, Guy Jacobson, Ron Jarrell, P,obin Jeffries, Mike
Kazar, Jeff Koechling, l.arry Kraines, John Kunze, l)iane Langstun, Jill l.arkin, Robert Elton Maas,

1
A PracticalGuideto the UNIXSystemby MarkG. Sobell.Copyright(c) 1984b_ MarkG. Sobell.publishedbyThe

Iknjamin/CummingsthJblishingCompany.UNIXisa trademarkofAT&TBelllaboratories.



4 I'111!I)I!SIGNANI)I!VAIUATIONO1:ON.-I.INI,IIII_I.PSYSTEMS

Jon McCombie, Bud Mishra, Allen Newell, Eric O_bo!'nc, 'l'om Peters, Frank Pfenning, Jon
Rosenberg, Mike Rychener, Rex Sanders, Mahadev Satyanarayan, .h_hn Schlag, Ben Shneiderman,
Jeff Shrager, Mei Siegel, Roy Taylor. Aaron 'lemin, Ed 'l'hompson, Mabry Tyson, Jeff'l'ytus, Hank
Walker, Janet Walker, Jon Webb, and Bob Whiteside. Additionally, I would especially like to thank
all file people that should have been listed here, but weren't due to the frailty of my memory.

I also want to thank the National Science Foundation for a Graduate Fellowship which supported
me during my first three years as a graduate student, and the General Electric Foundation for a

Forgivable I.oan which supported me during my last three years. Their generous help was
invaluable.

My colleagues at A&anccd Programming Resources of Columbus, Ohio, several of whom are

already listed in the acknowledgements above, have provided me with a wonderflfl opportunity to
use some of the knowledge i've acquired from this thesis before my thesis was exen completed. I
want to thank Barry Heagren. Ken Sherman. and everyone else at APR for their support and
encouragement in the continuing development of ACRONYM's successors.

Finally, with their rank in these acknowledgement reflecting not their importance but rather the
priority with which they all too frequently have been given my time, I want to thank my family and

friends for their love and support. My wile, Trina, my children, Shana and Rachel, and most of my
relatives and friends have continued to believe in me even when any rational being could tell that I
would never in a million years complete my doctorate. If it weren't for them, they could never have
been right.



2 '1"1IF. I)IiSIGN AND INAI IlATION O1: ON-I ,INI! lllZl P SYST|'MS



ACKNOWI .I!I)GI;MI!NTS 5

Part One

The Problem



6 T111{I)I!SIGN AND EVAI UATION OI ON-I ..1NI!IIF.I_PSYSH,IMS



IN'iROI)UCTION 7

Chapter 1
Introduction

This thesis investigates the problems inherent in the design and evaluation of on-line help systems.

q'he gcneral problem of m_king computers easier to use is a vast enterprise of obvious importantce.

One common technique used toward this end is on-line help. In this thesis, I will address the

questions of how useful on-line help really is, what design alternatives may affect its relative

uscfulness, and how such systems can be evaluated.

By "on-line help systems" or "interactive help systems" I refer simply to any computer software

that has as its primary function the task of providing the user with information that will assist him in

the use of some other software system. This includes help systems that stand alone, as independent

utility programs in a a larger operating system, and subsystems embedded within larger systems,

generally help procedures within specialized utilities.

This thesis focuses entirely on the user interface to interactive help systems. Related topics that will

not be treated in detail include the implementation of help systems, the design of the task domain for

which help is being provided, and the importance of on-line help relative to other factors affecting

the ease with which a system is used. However, each of these areas is closely related to the subject of

this thesis, and some relevant material will of necessity be presented.

In the remainder of this chapter, I will describe in more detail the problems this thesis is concerned

with, and will outline the way the remainder of the thesis dc_ribes the solution.

1.1. How Should We Design User Interfaces?

. 3

Much has been written about the design and testing of user interfaces." Several authors ihave

proposed design methodologies in an attempt to facilitate and standardize the proccss by which good

2F'or example, [l, 4, 6, 14.29, 32,53, 54, 60, 61, 62, 68, 75, 78,88, 92, 98, 102, 107, ]21], to name a few.



8 Ti i1.iI)I!SIGN ANI) EV,\I ,U,VI'ION O1:ON-1 .INI:.I Il:l P SYSTI.IMS

intert'aces come into tile world. Unlbrtunately, these arc rarely used in the real world fbr a very good

reason: they typically mandate a prohibitive mnount of time spent in iterative design and formal

testing.

Although this thesis is concerned primarily with the specific question of designing and evaluating

on-line help systems, it also serves as a case study in the use of such methodologies. The

methodology used here is original, but derived in some part from those that have gone before. In

outline, it consists of eight steps:

1. State the problem, in order to better understand the problem, closely observe real world

users of the kind of system being studied. For this thesis, the problem can be stated as
"What would a good on-line help system look like?" This question is expanded upon in
Section 1.2.

2. Describe what already exists. Try to develop a framework that describes all the known

existing systems by their differences along some small number of simple dimensions.
This is done here in Chapters 2 and 3.

3. Search the literature for previous experimental results contrasting competing system
designs. This is done in Chapter 4.

4. Construct hypotheses regarding the most important design decisions: What are the most
important decisions? What are the likely answers? These are made explicit in Section 1.3.

5. Implement a prototype system that supports each of the major design alternatives. Use
all available tools to build the system quickly, sacrificing portability, efficiency, and
modularity where necessary to get the job done fast. The implementation used in this
thesis is described in Chapter 5.

6. Conduct controlled experiments to test the hypotheses about the correct design decisions.
Carefully observe the details of the users" interaction with the system. The experiments
used here are described in Chapter 6, with the results reported in Chapter 7.

7. Where the experiments do not bear out the hypotheses, consider reiterating from step 4.

8. Build the real system, doing right all of the things that were done wrong in step 5. This
was not done as part of this thesis, but the conclusions point out a clear path in this
direction. These conclusions are summarized in Chapter 8.

As stated above, this methodology is not terribly new. However, it is somewhat unusual in its use

of jury-rigged prototype systems, its emphasis on thorough initial searching of the literature, and the

use of protocols from previous systems. All of these features are geared to an often-mentioned aspect

of software development in recent years, the fact that one of the largest costs is programmers' time.

This methodology is designed to delay the costly coding efforts until the last possible moment, with

the hope that this will reduce the later costs associated with software maintenance and redesign.



INTRODL!CTION 9

Mcthodoh)gies such as this one are often proposed, and their evaluation is difficult and subjective.

In Section 8.2, I will discuss the results of using the methodoh)gy in the domain of on-line help, as

well as its applicability to other investigations of user interface design.

1.2. How Should We Build Interactive Help Systems?

Help systems have traditionally been one of the most neglected aspects of interactive systems.

Many otherwise excellent pieces of software include no help system at all, or help systems so ill-

conceived as to be nearly useless. Although some better examples are available [84, 100], the help

systems in general use are so uniformly unappealing that designers who do make an effort to

construct worthwhile help systems tend to assume that they are starting with a clean slate, working on

a problem that has never been seriously confi'onted before. Indeed, such was my assumption when I

began the work on help systems reported in this thesis. However, I have discovered that quite a few

interesting examples of useful help systems do exist, from which much can be learned.

First, however, it helps to have a clear idea of the underlying questions to be answered. I begin

with the assumption that the single most important criterion by which a help system should be

judged is the degree to which it facilitates the accomplishment of a particular task by a user who did

not previously know how to accomplish this task.

This is a very practical criterion, but not the only one possible. For example, it is not necessarily

the case that the help system which is most effective in the sense described above will also be the',one

which the users most enjoy using. Additionally it is probably not the case that the help system which

is most effective will also be the one which is the greatest aid to long-term learning. Indeed, precisely

the opposite may be true: it may be that the harder users have to work to learn to accomplish a

particular task, the more likely they are to remember the solution. Even if that were true, however, it

would not be reasonable to conclude that help systems should therefore be as unhelpful as possible,

in order to promote long-term learning. Therefore in the absence of an objective and reasonable

alternative, the effectiveness of a help system in facilitating learning has been selected as the primary

criterion by which help systems will be evaluated. In addition, subjective user preferences and

retention will also be considered as secondary measures of interest.

The design of on-line help systems is hampered somewhat by a constraint that is universal in

interactive systems, but uniquely important in help systems. This is.the need for simplicity -- for an

interface that requires minimal knowledge and effort for its use. Certainly simplicity is a virtue in the

user intcrfacc of any program, but it is vital for a help system. Typically, a help system is never used



l0 TI 1E I)I!SIG N AND EVAI_UATION O1:ON-1 INF. Ii1!1P SYSTFMS

lbr its own sake but only as a tool to aid in the us;eol'anoHler system. It is therefore used by people in

a hurry, often total novices, often already very fl'ustrated, who have absolutely no desire to learn any

more than the bare minimum about the help system itself. In this sense, many fancy features may be

self-defeating in a help system, if they slow the user's progress toward the explanation he seeks by

making him first learn the complexities of the help system.

What, then, should a help system actually look like? Indeed, is it even possible tbr a help system to

be of more assistance than a paper manual, which certainly presents the simplest mechanism

imaginable for most users? 'l'he remainder of this thesis provides the beginning of an answer to these

questions.

1.3. The Expe rimental Hypotheses

In this section, I will briefly describe the fundamental hypotheses that motivated the design of the

ACRONYM help system (Chapter 5) and the evaluative experiments (Chapter 6). These hypotheses

were arrived at after the literature surveys, user surveys, and user protocols that are summarized in

Chapters 3 and 4. The most striking fact about these hypotheses is that, after all that surveying, so

many of them were wrong. They are nonetheless presented here in their original |brm, to allow the

readcr to make his own guesse_,before fl_e results are detailed.

ttypothesis h While quality of help texts is crucial to good on-line help, the methods by which
those texts are accessed are of equal or greater importance in their effect on learning time.

Itypothesis II: New users of a system will learn more quickly using menu and tutorial help
systems than with key word or user-initiated context-dependent help systems.

Hypothesis llh Experienced users will learn new tasks more quickly with key word and user-
initiated context-dependent help systems than with menu and tutorial help.

Hypothesis IV: Both new and experienced users will fare better when both context-dependent
and non-context-dependent help are available than when only one or the other is
available.

Hypothesis V: Even a very sophisticated help system will not be nearly as helpful as a human
tutor.

ttypothesis Vh Allowing users to type help requests in English will not significantly improve
their rate of learning.



INI'ROI)UCIION 11

'l'he results of tile experiments tetKt to indicate that one of thesc hypotheses 3 was correct, three4

were simply wrong, and two5 were concerned with differences too small to be detected by the

experiments. Nonetheless, these basic hypotheses (most of which were specified explicitly when the

experiments were designed) underly the design of the help system and experiments described in the

Chapters 5 and 6.

1.4. The Structure of this Thesis

'l'his thesis is divided into five major parts. Part One presents the problem and its background.

After this introductory chapter, it consists of a general ta_xonolnyof hell) systems (Chapter 2), a

survey of existing help systems in the context of that taxonomy (Chapter 3), and a survey of prior

experimental results relevant to help systems (Chapter 4).

Part Two describes the method used to attack the problem. Chapter 5 describes the design of a

prototype help system, known as ACRONYM. This system offers all of those fbatures isolated as

most important by the taxonomy and survey, using an integrated database. The factors leading to

ACRONYM's design and its limitations are discussed, along with dle actual workings of the system.

Chapter 6 describes the experimental method used to evaluate ACRONYM and the hypotheses

associated with its design. l'his chapter also explains why the experiments were designed as they

were, and what other help systems were evaluated.

Part Three analyzes the results of the experiments. Chapter 7 presents in detail the results

comparing the help systems, as well as issues of user expertise, task and subject variation, subjective

evaluations, and user retention. Chapter 8 summarizes the results and contributions of the thesis,

both in regard m help systems and in the more general area of user interface design. This last chapter

includes a Practitioner's Summary, which could be subtitled "Advice to Builders of Future tlelp

Systems", and a Researcher's Agenda, summarizing the vast body of relevant and interesting

questions not answered by this research.

3Hypothesis VI

411ypotheses I, IV. and V

51typotheses 11and III



12 Till:, I)I!SIGN AND F.VAIL.IATION O1: ON-I ,INI,. il!!1P SYS'IEMS

1.5. How to Read this Thesis

Thcrc are several different approaches to reading this thesis which might bc usefid, dcpending on

what you want to get out of it.

If you want to build a real help system, and arc looking for practical advice, you should probably

read all of the background material (Chapters 1-4). You should then read the description of

ACRONYM in Chapter 5, and the conclusions in Chapter 8. You will certainly want to look at

Appcndix IS,which demonstrates the system in use, and may want to peruse Appcndix C as well.

If you're more interested in this thesis for its experimcntal methodology, especially if you're

planning similar experiments in the future, you may want to skip Part One altogether; in fact, you can

probably begin with Chapter 6 and read the rest of the thesis from there. You may wish to look over

Appcndix A to see how the experiments looked to the subjects. If you'rc not comfortable with

regression analysis, you might want to read Appendix E as well.

If you have a special interest in issues of text readability and technical writing, you should test your

skills on the examples in Appendix D. This appendix presents samples of the two versions of the

UNIX manual studied in the experiment, one of which was dramatically more useful to the subjects

tha,', tiae other. The details and implications of this particular results are presented in Section 7.3.



A GliNERAI. IAXONOMY O1: lll!l.P SYSTEMS 13

Chapter 2
A General Taxonomy of Help Systems

People have been building interactive help systems ahnost as long as they have been building

software systems of any kind. in general, however, the help system has been an afterthought, quickly

and hastily constructed and only marginally integrated into the larger system. Programmers like to

program: They are not so fond of documenting dleir code, and even less fond of writing

documentation for the final users of their systems. On-line help, it would appear, is yet still lower in

the hierarchy of the programmer's favorite activities.

Nonetheless, over the years quite a few interesting approaches have been tried, generally in isolated

settings and in an ad hoc manner. A t_w attempts have been made to survey the field [55, 113, 108],

but these have been less dmn successful. Houghton [55], for example, purports to survey the area of

on-line help, but includes in this category such diverse topics as error messages and prompting. As

far as the central topic of dais thesis, the mechanisms of on-line help, is concerned, he does describe

many of the types of help system to be discussed here, but he makes no attempt to fit them into any

framework or taxonomy to describe such systems.

Sondeheimer and Relles [113] actually do construct a simple taxonomy of on-line help systems.

They classify help systems according to four dimensions. The following descriptions are from the

article cited:

1. access method-- the way users can COtlSltXgc(or enter requestsfor assistance,.
Z data structure -- the manner in which different portions of assistance reformation are related

to each other.

3. software architecture -- how assistance requests and their responses are communicated
among a user, an operating system, application programs, and the assistance database.

4. contextual knowledge -- how much information is retained about the assistance
enviromnent, including the user, the application, and the tasks being performed.

(l:rom Sondheimer _._Relies,[113])

These categories, however, view on-line help from a lower level than is desired in this thesis. Of the

four categories, the second and third are primarily questions of implementation, while the fourth is



14 T!11.'.I)I.SIGNANDI]VAIUAIIONOi.ON-i.INF.!11!1.1'SYS'IFMS

also an implementation consideratioJ_ in the sense that the nnplementor must decide how much

context to preserve. For the purposes of this taxonomy, ! would like to presume an arbitrarily fast

computer with otherwise ideal hardware and sufficient memory to easily retain all relewmt contextual

information. (Recall that the topic is the design and evaluation of on-line help, not its

implementation.) From this idealized perspective, it is easier to develop a user-oriented taxonomy of

help systems. After that taxonomy has been developed, it will be scrutinized in Section 2.4 R)r

implementation considerations.

In the sections that follow, I will describe seven dimensions along which the help system as the user

sees"it may vary. Three of these are issues of hell) access, among which is Sondheimer and Relles' first

category, access mechanisms. Another three dimensions are issues of ltell)presenzali¢Jp_.The seventh,

and possibly most important dimension of help system variation is integralio_z-- the degree to which

the various help features are unifi)nnly available in all potentially relevant contexts.

Among the areas not included in this taxonomy are error messages, prompting messages, command

languages and basic interface paradigms. Such topics are certainly important components in the

usability and learnability of interactive systems, but are beyond the scope of this thesis. Eventually a

taxonomy of on-line help systems should be subsumed by a larger taxonomy of user interfaces, which

would include such topics.

Also not included in this taxonomy are any issues related to implementation. It seems premature to

dwell on the appropriate underlying data structures for on-line help systems before it is clear how the

systems themselves should work. However, it is worth noting that the data structures used in the

prototype system described in Chapter 5 are sufficient to support nearly all of the functionality

described here in an efficient manner.

2.1. Access Issues

There are at least three major issues involved in the user's access to a help system. "Ihese issues

involve whose initiative first stimulates the help system's activity, how the user may request further

help, and how complex the help request language is.



AGI_NERAI.rAXONOMYO1:l ililP SYSTEMS 15

2.1.1. Access Initiative

The initiative in a help system may come from only two sources: the human user and the

computer. In most systems, the initiative is strictly the user's. No help is presented until the user

activates some explicit mechanism to request help -- fox"example, by typing the word "help" or

pressing a key labeled "HEI.I _''. In such a system, the help component may be viewed as simply a

utility program that is activated by specific commands.

In other systems, however, initiative may reside wholly or partially with the computer. In several

tutoring systems (such as the WIZARD system [37, 109]) the program will intervene and suggest new

approaches or provide new: information when the user seems to need it. In more conventional

systems, software carefully engineered for novice users (such as l_otus 1-2-3184]) may provide

automatic help in the form of two-level menus that indicate some consequences of possible menu

choices.6 (Here, the border between on-line help as I have defined it and prompting messages

becomes somewhat fuzzy.) Other possibilities for mixed-initiative systems include systems that

automatically offer help if the user is idle for a certain period of time, systems that automatically

attempt to interpret invalid commands as requests for help of some sort, and systems that maintain a

constantly-updated display of help that seems appropriate for the current context, such as Lotus

1-2-3.

In classifying help s:_stems according to access initiative, such systems are simply placed on a

continuum between systems in which human users have the sole initiative and systems in which the

computer has the sole initiative. In practice, it is very rare to find a system in which the computer

more often takes the initiative than the human, but systems with somewhat mixed initiative are

common.

2.1.2. Access Mechanisms

Despite the large number of on-line help systems that have been built, the number of access

mechanisms implemented or even proposed is actually very small. I have been able to isolate only six

such mechanisms. Of course, there is a wide room for variation in the implementation of these

mechanisms; the most important aspect of such variation is access complexity, which is discussed in

Section 2.1.3.

6SeeSection3.1.8fora morecompletedescriptionofhowthisworks.



16 TI IE I)I!SIGN AND FNAI,UATION O1: ON-LINI_ III!I,P SYSTEMS

The mechanisms discussed below are all discussed in terms of human-initiated help. l-lowever, the

same mechanisms can be available for communicating with a system in which the computer takes the

initiative; in such a case, they are simply mechanisms for requesting further help or clarification,

rather than for requesting initial help. (The exception to this is contextually dependent help.

Context is generally most useful for an initial help request, rather than in requests for clarification.

However, context is an essential component of any help that is initiated by the computer.)

2.1.2.1. Key Word l-lell_

Probably the most common help mechanism is the key word help request. Here the user simply

specifies a key word which the system uses as an index to its help database. The sophistication of the

key word mechanisms can vary greatly, however.

Most often, the only key words acceptable to a system are the actual names of commands.

Although this is extremely common, due to the obvious ease of implementation, this method suft_rs

from the equally obvious disadvantage that users can not get any useful help until they know the

name of the command they need to learn about. (This effect is partially compensated for, in some

systems, by allowing the system to print a list of the key words it knows about. By skimming this list,

the user can try to guess which key word is the one he wants. But this quickly becomes unwieldy on

large systems such as TOPS-20 [22], in which the list of key words may number in the hundreds, or in

other systems in which the key words are simply inscrutable.)

A somewhat more sophisticated key word mechanism might search through a sectioned database

for any key word that might be specified, printing out for the user those sections of the database that

contain the key word. This approach is also quite easy to implement, but in a large database it can be

very time-consuming. Some systems, such as the "key" command on CMU UNIX [118], modify this

approach by only searching through a "header" area of each section of the database, rather than

through every line of the database. This improves the system's performance at the cost of a

substantial reduction in the number of key words recognized and the proportion of possible relevant

entries found.

One problem with any method that involves searching through a textual database for an arbitrary

word or phrase is that such unintelligent searching inevitably finds texts that are totally inappropriate.

A request for information about the key word "see" might elicit information about a random number



A Gi!NI,IRAI, I'AXONOMY O1: IIi:'IP SYSTI_MS 17

gcnerating subroutine that requires a "seed'" value."1Applying the computer's raw power to the task

of searching a dat_basc can thus have the undesirable result of overwhelming the user with irrelevant

information. (Such an information flood becomes somewhat more manageable in a system that

facilitates scrolling, but the sheer volume can still exact a significant cost in the user's time, as the

experiments in this thesis suggest.)

Unfortunately, what is probably the "right" technique for constructing key word help mechanisms

is also the most difficult and cxpensivc. Each section of the help database can be explicitly indexed

by the relevant key words. This places a heavy burden on the documentation designcr, in that it is

crucial that hc provide all such kcywords, but it is the surest method for guaranteeing that all relevant

key words will find the text, whilc also insuring that kcy v,ord requests for common or short words

will not ovcrwhelm the user with useless information. This form of key word request is rare in

on-line help systcms, though it is more common in large infonnation retrieval systcms. This i,; the

approach used by the prototype help system described in Chapter 5.8

2.1.2.2.Menu Help

The second most common type of help acccss mechanism is the menu. In a rncnu system, the user

is given a list of help topics from which to select the topic or topics of interest to him. Details of

menu implementation can vary greatly, generally along a simple contitmum of ease of use. Menu

selection can be as simple as pointing with a mouse, or can depend on a complex syntax: for

requesting the next menu item. Menu systems also differ in the mechanisms by which the first menu

is created. Menus can be created in response to erroneous commands, in response to explicit requests

for help, or as a follow-up to the previous menu selection.

Systems such as ZOG [100] have had some success with the idea of a menu system as the only mode

of human-computer interaction; other systems that have not embraced the menu as the entire

command language ha_c nonetheless used it as the entire help system structure [66]. Nonetheless, the

strict discipline of a menu may slow down the performance of experts9 and may make it difficuk for

71n this example, it might seem that an appropriate mechanism would simply require that an entire wordmatch the key word
being searched for. but this is inadequate in other ways: for example, real users will often try to search for a key word ,_Jch as
"'del" instead of a sequence of key words such as "delete" and "deleting". Thus partial word matching is often desirable.

8The prototype system hand-codes all of the key words, a very expensive implementation in terms of documentation design
time. Development of such systems in the future could be greatly streamlined with automated aids for the documentation
designer, including, most important, an on-line thesaurus.

9Although this Lsa common opinion among computer experts, I have found no empirical cvidence to support it.



18 Ti IE DESIGN AND IiVAI ,UATION Oi _ON-I JNI_ I ll_lJ _SYS II_MS

naive users to find hell) on particular topics. Thus integration with other modes of help requests may

be particularly valuable fi)rmenu-based help systems.

2.1.2.3. Contextually Invoked Help

Several help systems have had great success with providing information based on file user's current

context. In such a system, information ranging from a partial command line to a user's entire history

()fuse of the system can be used to determine the help most appropriate at the moment.

Obviously, an ambitious context-dependent hell) system could be a major programming

undertaking. Yet the basic mechanisms that have proved useful in systems such as TOPS-20 [22] can

be implemented fairly easily. The most basic such mechanism is a parser that analyzes the current

partial command line and uses it as a help request, as is done in 'FOPS-20. Another simple

mechanism would just keep usage statistics to show which commands and options a user had often

executed in the past, and would use these to choose among possible interpretations of help requests.

(Note that these statistics could be used in responding to any type of help request, not merely one

based on the context of the current command line.)

A common failure of context-based help systems such as TOPS-20 is a failure to integrate the

c_mtext-dependent help with other components of the help systems. That is, the system makes it

impossit)le for the user to pursue more information fl'om the help system without abandoning his

command state. This issue will be discussed more fully in Section 2.3, below.

2.1.2.4.Graphically Invoked Help

With the advent of integrated workstation environments, utilizing biunap display technology and

pointing devices such as mice, new kinds of help access mechanisms have become possible. While

these technologies facilitate improvements in the other help mechanisms -- menu selection, for

example, is likely to be much easier with a mouse than without one -- they also allow the possibility

of simply pointing at images on the screen and asking for help about them.

Since the technology is still quite new, on-line help's traditional position in the pantheon 10 of

things important to computer programmers has predictably insured that not much has been clone

with these technologies in the area of on-line help. In particular, I have fi)und no general-purpose

help system in which the mouse could be used to point at any object, including pictures, on the

lOpan-lhe'-on,n, 3. lqae aggregate gods of a people. ( Webster's Collegiate Dictionao', third edition)



A (JI_NI!RAI, TAXONOMY O1:I11!1,t' SYSTI-MS 19

screen in order to request help about it. However, an early vision t)f such a system may be found in

the GROK program at the Information Technology Center at Carnegie-Mellon University [83]. This

utility program allows the user to point at any text on the screen to request help about it. It is

perhaps best thought of as a graphically-aided key word help rcquc_,;tsystem. An unfinished help

systcrn ft,wthe SPICE project at CMU uses bitmap tcchm_logy to produce innovative help displays,

with "push buttons" in the help windows allowing the mouse to be used to get further help [21]. This

is essentially a variant of menu selection, in a more command-oriented display. It remains to be seen

whether graphically based help systems such as these will eventually provide entirely new paradigms

for help, or whether they will just h_cilitatc improvements on other help access mechanisms such as

menu and key word help.

2.1.2.5. Natural Language Help Requests

An obvious possible access mechanism for on-line help is natural language. After all, if the nature

of the task domain (help requests) presupposes that the user is having some kind of difficulty using

the computer, it seems logical to suppose that communication in the user's native tongue would be an

invaluable assistance. Indeed, this kind of communication seems so natural that its desirability is

accepted without question in the sparse literature on help systems. S_mdhcimer and Relies, for

example, state flatly that "Ideally, we would like to allow users to enter assistance requests as

questions in natural language." [113]

Such uncritical assessments are made possible only by the difficulty of implementing such systems.

Panaceas generally only last until they are tried. And indeed, the difficulty of constructing natural

language interfaces has so far prevented any realistic testing of them in the context of on-line help.

For example, Wilensky [122] has developed a natural language consultant for UNIX, but has been

unable to provide any real data about its usefulness for two reasons: its database is too small to be

really useful, and it takes over a minute to respond to even the simplest of requests. In the absence of

the technology to make such systems perform well enough for real users, it is certainly tempting to

imagine that simple performance enhancements will one day allow such systems to solve all of the

problems of on-line help.

Unfortunately, there are several reasons to suppose that this is not the case. Natural language is

extremely verbose: thus it seems possible that the time necessary to actually type in natural language

help requests will at least partially compensate for the ease with which such requests can be

formulated in the mind. Moreover, expert users seem to rebel against any systems that force them

into what might be considered "needless verbosity". [)raper [27] has suggested that experts may in



20 Till! I)IiSIGN ANI) I!VAI [;ATION O1: ON-I INI! 111il2 SYSTEMS

thct be the most important users of"certain kinds of help systems; if this is true, it does not bode well

for natural language tlelp.

As part of this thesis, an experiment was conducted testing a simulated natural language help

system, with results that will be disappointing to those who believe that natural language is the

answer. "l'hese results are reported in Section 7.1.

2.1.2.6. Spoken Help Requests

One mechanism that has apparently never been used in a help system is speech recognition.

Speech recognition has obvious potential usefulness in help systems: for example, a natural language

system that understood spoken input would not be vulnerable to most of the criticisms of natural

language help systems that were listed in the previous section. However, since speech recognition in

a complex domain remains a topic of intense research activity with little practical success, this will not

be possible in the near future.

Speech recognition has had more success in limited domains; systems such as HEARSAY-II

[87] and HARPY [71] have successfully recognized vocabularies of hundreds of words. It is

conceivable that limited-domain speech recognition could open up new possibilities in on-line help

syste,.ns. No such work has yet been done, and time and hardware have pre,,ented the investigation

of such possibilities in this thesis.

2.1.3. Access Complexity

The third access dimension along which on-line help systems may vary is in the complexity of the

mechanisms by which help is requested. Virtually all of the mechanisms described in the previous

section may be implemented well or poorly from the user's perspective. The difference can be

overwhelming in terms of its effect on the system's effectiveness.

For example, SHEPHERD [105] is a system designed m managed source files for SAII_ programs

and to organize their documentation. The system includes an on-line help system that organizes the

information about the SAIl. library into a tree structure that is, in essence, a menu system. However,

the access mechanisms were sufficiently cumbersome that the system was rarely used by the

community for which it was designed. In contrast, a well-designed menu system such as ZOG

[100] has had enormous success with a wide variety of user groups, using the same basic access

mechanism. The difference is that in ZOG, a menu selection can be made with a single keystroke,

generally with a fair amountof semantic content. In poorer menu systems, such as the CMU LISP



A GI-N I!RAI. I AXONOM Y OF III:I .P SYSTFMS 21

help system described in Section 3.1.6, a menu selection may necessitate typing the name of a path

through a help network, such as "HH.P PI_.INT-IJq'-i_XAMPI.t_S". In general, a little extra

programming can go a long way in improving such systems for the end user; for example, if tile user

had just viewed help by typing "HEIJ ) PI_,IN'I'-LPT", it is not a major programming effort to have a

follow-up request of the form "H El .P EXA MPI.ES" translate to "HELP

PRINT-LIq'-EXAMPIJ£S". Using a mouse to point at the word "I(XAMPI.ES" is probably better

still.

Of course, syntax issues are relevant to other types of help access mechanisms besides menus; in

general, the simpler the syntax the better. 'I'his is true of user interfaces in general, but it is espedally

true in help systems because the systems must be useful when the user is in a state of confusion or

ignorance. The last thing such a user needs is a help system with unnecessarily baroque syntax.

In addition to syntax, there are several other factors affecting the complexity of help access

mechanisms. In menu systems, the branching factor is crucial: a system with too many choices at

each level can overwhelm the user, while a system with too few choices can force the user to choose

too often, making the process of actually finding the right information an arduous one. In graphics-

based systems, issues of what icons should look like and how selection with a mouse should be

achieved (number of clicks, meanings o1"buttons, etc.) are still in gencrat unresolved: their resolution

is obviously important for on-line help systems that use these mechanism. Finally, context-

dependent help systems may react in a number of ways when help requests are ambiguous in context.

Dynamically-generated menus that allow the user to choose between the ambiguous interpretations

are clearly less complex and less frustrating to the user than a message which simply tells the user that

his request is ambiguous.

Many of the help systems I have studied have suffered from these kinds of"minor" flaws. That is,

their basic help access mechanisms have been sound, but the details of the interactions with the users

have been unnecessarily complex or otherwise difficult. It seems likely that m die domain of on-line

help, where the user's frustration level is very high to begin with, such small problems can have a

high cost. Ultimately, they can cause such systems to end up like SHEPHI-_RI): virtually unused

despite the wealth of information they contain and the reasonable paradigm with which they are

designed, simply because they are too frustrating to use.



22 TI II:.I)i:.S1GN AND I:VAIUATION ()1: ON-I .INi:'.111,,IP SYSTEMS

2.2. Presentation Issues

On-line help varies greatly not only in how it is accessed, but in how it is presented as well. In this

section, I will explore the three principal dimension along which the present_ttion of help information

may vary.

2.2.1. Presentation Methods

The simplest and most common method of presenting help infi)rmation is to simply throw it onto

the user's screen, with no regard to what was there first. This is tile teletype model of interaction,

which views the user's terminal as a one-way device that can do nothing more than accept sequential

lines of text. Although this model is hopelessly out of date, it is simple for the programmer to deal

with and therefore underlies the majority of on-line help systems in the world today. Its greatest flaw

is that it almost always causes the user's previous context to scroll of the screen, so that he can no

longer see the result of the interaction with the computer that caused him to request help in the first

place.

Another presentation method that is ahnost as easy for programmers is to simply rely heavily on a

printed manual. The on-line component of a help system can simply tell the user which part of the

manual to look at.,thus serving as no more than an "electronic index". This drastically reduces the

volume of output from the on-line system, thus at least partially preserving the user's context on the

screen. The great drawback of this system, however, is its reliance on paper. A user without a paper

manual is doomed, and a user with an outdated manual can be in even worse shape: instead of no

information, he may have erroneous information.

Video screen technology has allowed more modern help systems m use multiple windows. In such

a system, the user can preserve his context at the bottom of the screen, tbr example, while scrolling

through help texts on the top of his screen. The penalty here, of course, is that the available screen

size for each of these activities is only half of the screen size to which the user is otherwise

accustomed. Large displays such as those found in the new generation of workstations will alleviate

this problem to a large extent. If help systems that make use of multiple windows become commonly

available in tandem with the larger screens, even experienced users are less likely to resent the screen

territory that is allotted to the help system.

It should be stressed, however, that despite the penalty that multiple windows can impose on screen

"real estate," the overall effect of windowing technology is extremely beneficial, and facilitates a host



A Gi:N I,_RAI,TANONOM Y O1:111!1P SYSTI!MS 23

of new techniques. Multiple windows and mtiltiple processes (which facilitate help processes running

independently of the application program) have ti_ndamentally changed the hmdscape in the world

of help systems.

Finally, tile future holds the promise of new technologies that might be useful for the presentation

of help information. Synthesized speech might pro'vide help without sacrificing any of the screen

territory, though no experiments have been conducted on such a system. (Synthesized speech has

often been of a rather l',)wquality, which could make it less comprehensible and thus less useful in a

help system.) New displays also make it plausible to include pictures, animations, or even videotapes

as part of a help message. Thorough investigation of these possibilities will require substantial effort

in both hardware and software development, but a first glimpse of these may be seen from some of

the tutorial programs that come with the Apple Macintosh computer.

2.2.2. Presentation Source

Besides the question of how the help information is to be presented, there is the question of where

it is to come fi'om. This may seem to be primarily an implementation question: text may be clipped

out of a monolithic on-line manual, it may be retrieved from a network of help texts, or accessed by

key word from a relational database. However, there is a more fundamenta! issue here as well. The

text can either be retrieved verbatim from some data structure that contains it, or it may be generated

"on-the-fly" by some natural language composition mechanisms acting on an underlying knowledge

representation.

Dynamically generating text from an underlying knowledge representation is the kind of project

that computer scientists love, and indeed many current researchers are taking this approach to on-line

help [40, 91,117]. However, it seems reasonable to question the motivations of such an el'fort.

Certainly getting computers to generate reasonable natural language from a knowledge

representation base is a fascinating and useful research topic. But in the domain of on-line help,

presumably, the primary goal is not to build an on-line help system that is theoretically interesting

but rather to build an on-line help system that helps the user. In this light, there is no evidence to

suggest that dynamic generation of text is likely to produce higher quality texts than human

documenters would produce if they prepared all the system's texts in advance. (Indeed, the output of

language generation programs suggests that the opposite is true.) However, it may be useful to use

language generation facilities to dynamically generate examples, or to customize explanations to a

specific context in which the user is having difficulties. Given the current state of language



24 Till:, [)I!SIGN AND I!VAI UATION O!: ON-I .INI! II1!1P SYSTi;MS

generation, this does not yet sound like a very even trade. Still, a state of the art help system might

want to provide standard texts for standard situations, dynamically generated examples, and

dynamically generated or dynamically modified texts for unusual situations, most notably situations

involving ambiguous help requests where none of the "canned" texts unambiguously apply.

2.2.3. Text Quality

_l_e final dimension along which help presentation varies is that of text qualio,. Help texts are

English prose, and as such vary in quality as widely as the readings and compositions vary in a high

school English class. The literature on text readability is enormous, and nearly all of it applies to help

texts.

What this suggests primarily is that such texts should be designed by a specialist. Nonetheless, it is

possible for the non-specialist to evaluate his own texts in the light of certain very general criteria. It

should be remembered, however, that most of these have not been experimentally studied for their

importance in the particular domain of on-line help systems.

• Readability: Several st_mdard measures exist by which text readability can be measured.
National magazines such as Time and New,sweek have determined that their texts are best
accepted when written at a seventh or eighth grade reading level. Documentation writers
can use automated tools such as the UNIX style utility [15, 16] to detemfine the reading
levels of their texts. The current study does shed some light on the usefulness of some of
these tools, as explained in Section 7.3.

• Organization: Familiarity with the task domain and user population of a help system can
help the documentation designer to organize his texts intelligently. In addition to
standard considerations of reasonable structure, knowledge about the tasks and users can

help to put the most commonly-needed texts up front. I,ittle details such as these can
save enormous amounts of user time and frustration cumulatively over the life of a

system.

• Formatting and headings: Designers of paper documents have long been aware of the
importants of headings, font size, and similar considerations of layout [33]. With the
advent of bitmap display technology, these same issues are becoming relevant to on-line
help designers.

• Chunk Size: Complementing meaningful, highlighted headings should be texts divided
into small pieces. If the headings are meaningful and easy to read and notice, then they
allow the user to only read the relevant sections of text. in order to make this work, the
text should be divided into sections that arc as small as is reasonably possible, thus

minimizing what the user actually has to read. (How small is small enough? It seems
likely that this depends on several factors; including task complexity and display
characteristics. Certainly it is best if the texts fit in a window without any need to scroll,
but even this is not always possible.)



AGi!NI_RAI,TAXONOMYO1:l lFl P 'SYSTI:MS 25

• Voice and ()dentation: It seems likely that use of tile passive voice, anthropomorphic
orientation, and similar considerations of style may heavily affect the usefulness of text.

While passive voice seems to be universally condemned, other issues such as
anthropomorphism are more disputed. Houghton [55] declares it to be absolutely wrong,
but at least some professional documentation writers seem to think that texts in the "You
User, Me Computer" style put users at ease and make the texts generally clearer.
Commodore Business Machines has graced the literature with several extreme examples
of this style[20] without anything remotely resembling negative effects in the
marketplace.

2.3. Integration

Finally, perhaps the most important aspect of an on-line help system as a whole is its level of

integration. Many computer systems provide several on-line help mechanisms, each with its own

database, operating completely independently. The experimental system designed for this thesis

offers several methods of accessing the same information, making it easy to switch between methods

when appropriate. 11 Similarly, some systems make on-line help an independent utility, accessible

only when you're not doing anything else, while others try to make the help available within the

context of most other, larger tasks.

The virtues of integration are obvious: by providing uniform access to help, you eliminate

confllsion fi_r the user and make it easier li)r him to stay in context. By making various mechanisms

access a single help database, },ou make it easier for the user to try all of die mechanisms you provide

in his attempt to learn what he needs to know. Of course, integrated help is more challenging than

non-integrated help from an implementation perspective, but the prototype help system described in

Chapter 5 demonstrates that the problem is neither impossible nor, indeed, particularly difficult.

An excellent example of the need for integrated help systems was found in the observation of a

TOPS-20 user attempting to create a subdirectory for the first time. This user first used the list of

help topics that TOPS-20 provides as an index to its key word help system, and managed to

determine that the "BUII,D" program was for building and modifying subdirectories. After typing

"build", the user typed a question mark. This activated TOPS-20's context-sensitive help facility,

which told her that the next thing she should type should be a directory name. Unfortunately, this

user did not realize that in TOPS-20, directory names are ahnost always surrounded by angle

brackets. After trying unsuccessfully fi)r several minutes to get the program to accept her version of a

111knowof no other systemthat hasdone this, although Fcnchel'sthesis[34]describeda systemdesignedto work thisway
but never fully implementedin this regard.



26 TiI!! i)I!SIGNAND!!VA111A'IIONO1:ON-IINli l ll!l,PSYSTIMS

directory name, tile user had to get out of the I_UILI)program entirely and use tile key word help

system to search for an explanation of what directory names look like. ttad the context-sensitive help

mechanism and the key word help mechanisms been integrated using a common database, she could

have gotten this in fonnation from within the BUII.D utility, without sacrificing her entire context.

Moreover, integrated help systems would be helpfid to the documentation designers as well as to

the users. In non-integrated systems, several different databases of help information must be created

and maintained, which is inevitably more work than maintaining a single database.

It should be noted that an "integrated" help system, in which all help systems access the same

database and are available together in all contexts, is not at all the same as an "integral" help system.

An "integral" help system is one in which the help is provided by the same program that executes the

command. 'l'he help is viewed as an essential part of the program's functionality, hence the ten'n

"integral". ltae argument in favor of integral help is that the help system can provide better help

because it has access to the program's underlying data structures. While dais may be uuc in the case

of an extremely sophisticated help system, it is unlikely in most cases to compensate from the loss of a

unifonn help system available for use in all program,;. Essentially, this is the same trade-off involved

in the choice between designing sophisticated user interfaces for each program, or designing a single

user interface management system which will communicate with all of the underlying programs. You

may sometimes have to sacrifice a little functionality if you really want a well-designed, uniform

interface.

It is also worth noting that it is the availability of multiprocessing capabilities that makes it

reasonable to consider an elaborate non-integral help system of the kind built for this thesis. In an

environment without multiple processes, it would be much harder to design an integrated help

system that preserved any arbitrary command context.

2.4. Implementation Considerations

In the preceding sections, 1 have discussed several dimensions along which on-line help may vary.

In most cases, the variation can be clearly supposed m be for the better in one particular direction.

What has not been considered is the cost of implementing some of the help mechanisms described.

Such a cost assessment and implementation analysis is beyond the scope of this thesis. However, it is

worth noting which things are particularly hard.

In particular, sophisticated graphics are hard, natural language is hard, speech recognition is hard,



A GI-NI-RAI_ TAXONOMY O!: i lI._I,PSYSTEMS 27

and context-dependent help can be arbitrarily easyor hard, depending on how far the system tries to

go. Aside from these things,however, all of the help mechanisms described in this chapter can be

implemented reasonably inexpensively at quickly by any good programmer. Why this hasn't

generallybeen done is a verygood question.

2.5. Summary

The dimensions among which help systems vary, as described in this chapter, are pictured in Figure

2-1. 'l'his chart may be helpful in considering the design of help systems as yet unimplemented. In

the next chapter, I will use the taxonomy to describe a number of help system:; actually used in the

real world, and to explain the successes and failures of these help systems, as reported by their users

and observed in user protocol experiments.

Figure 2-1: The Dimensions of Help System Variability

Integration

Access Presentation
Issues Issues

Initiative Complexity Mechanism Methods Source Text
Quality

Key Word Context-
Dependent

i Natural
Menu Language

Graphical Spoken



• '!" P28 TIlE I)I!SIGN ANI) EVAI.I.;A'I'ION OI: ON-I.IN '.I IEI SYSTI?.MS



ASLJR\'I!YO1"EXISI1NGIll!IP SYSTFMS 29

Chapte r 3
A Survey of Existing Help Systems

3.1. On-Line Help Systems for User-Oriented Software

In this chapter, I will discuss a number of real world help systems in the perspective of the

taxonomy of help systems presented in file previous chapter. The list of systems discussed in this

chapter is far from exhaustive; it is intended instead to be representative of the diversity of help

systems that have been previously implemented. Each of the systems will be described briefly, and

its place in the taxonomy of the previous chapter will be explained. That taxonomy will also be used

m describe simple changes that might significantly improve the help system.

In what fbllows, reference will be made at several points to "users' comments". These are simply

the comments users made in response to a very open-ended survey about help systems. Users were

asked, among other things, to provide examples of the best and worst examples of help systems they

had used, along with their ideas about why these systems were good or bad. The responses displayed

an interesting tolerance on the part of the users; many more positive comments were made than

negative ones, even in the case of extremely simple-minded or even obviously poorly-designed help

systems. It seems that users are so grateful for any help at all that they tend to mention the positive

more often. Or, perhaps their experience with getting help is so generally negative that anything at

all helpful really stands out in their minds. Typical comments began "I hardly ever find help systems

useful, but..." The observations below are based on the "buts" these users provided, and (in many

cases) on observations of experienced users of the systems trying to get the help systems to help them

perform new tasks.



30 TI lli DESIGN AND I-VA1,UATION OF ON-I ,INF. II1!1,1:'SYS'IEMS

3.1.1. TOPS-20

TOPS-20 [22] is an operating system that runs on large l)ECsystem-20 computers. Its help system

can be briefly characterized as coming in two poorly integrated parts. The first part is a very simple

key word help mechanism, with a simple syntax ("HFI,I' <command name>"), a rudimentary

presentation method (simply printing text, no scrolling or windowing), and pre-written text of erratic

quality. The second part is a context-dependent help mechanism, invoked by the simple method of

typing either ESCAPE or a question mark at any point in a command line. This provides an

extremely short help message, without die possibility of obtaining any further information in context.

The help system is completely human-initiated, and although the context-dependent help is well

integrated into the system as a whole, die help system overall suffers from a very low level of

integration.

TOPS-20 had the help system most commonly cited as "best" in my user surveys.]2 The biggest

advantage of TOPS-20 appears to be the nearly uniform availability of context-dependent help.

Users can get very short syntactic help at any time by typing a question mark. However, there is only

one layer of context-dependent help available. If the user d0esn't learn what he needs to know from

the short help provided, he can't find out any more in context. In such a case, the user must resort to

I'OPS-20's second help system, a very primitive key word system. 'l'o use the key word system, the

user must abort any partial comrnand context, and issue the "HEI.P" command to die operating

system. "HELP" must be followed by the name of a TOPS-20 command; such a request will cause

the entire documentation on that command to be printed on the user's terminal, without even

pausing after each screenfull of information.

Obviously, TOPS-20 suffers from a very low degree of integration. (In fact, it was in the

observation of a subject using the TOPS-20 help system that the need for help system integration first

became apparent, as explained in Section 2.3.) Merely being able to access both help systems from

an embedded context -- that is, to issue key word help requests without forfeiting one's command

context -- would be a significant improvement.

However, the improvement would be more significant if the key word help that was being

integrated was of a higher quality. TOPS-20 offers no help at all to the user who does not already

know the name of the command he is trying to use; there is no provision for lookup of synonyms.

12Of course. TOPS-20 is ,also one of the most widely-used of the systems listed here. Nonetheless, the mentions of TOPS-20
were almost uniformly positive.



A SURVI'_Y01: I:.XI,q'IING iiI!1P SYSTFMS .11

'l'here is also no conceptual help: help is provided only for commands, not tbr such vital concepts as

"tile" and "directory". All of these could easily be provided without significantly changing the

TOPS-20 help access methods.

Additionally, the presentation ol"]'OPS-20's key word help leaves obvious room fi)r ilnprovement.

At the very least, it could easily be modified to pause after each screen full of information had been

printed. (Actually, a 'I'OPS-20 terminal setting comrnand can achieve this effect, but it is not a part of

the help system, is not documented with the help system, and is hence effectively unknowable for

novices.) With only a little programming effort, such texts could be made to scroll through the top of

the screen _hile preserving context in the bottom.

Finally, the quality of the TOPS-20 help texts is erratic, a common circumstance in a system where

the drafting of help texts has been left to the implementors of the relevant programs. Some of the

texts are of quite high quality, but this is largely a matter of chance and the temperment of the

individual programmers.

With all of the criticisms listed here, it is worth noting again that TOPS-20 is commonly cited as

having one of the world's great help systems. Ttfis reputation is probably in large part attributable to

its competition: few other operating systems offer any kind of conte×.t-dependent help at all. The

feature does seem to be enormously popular with users.

3.1.2. Emacs

Emacs in both its UNIX [44] and TOPS-20 [115] versions provides an interesting assortment of help

features. Each provides two kinds of help: a straightforward menu system, and a context-dependent

help system which is activated by typing a help character at various points in the middle of

commands. These two help components are entirely non-integrated. As with st) many other systems,

the text's varied origins are reflected in its erratic quality. The initiative is primarily human, although

some versions of Emacs automatically invoke the context-dependent help when certain command

errors are made. (This is a customization option; users can choose whether or not to let the computer

take the initiative in such situations.) The presentation methods are fairly sophisticated, preserving

context or restoring it when finished, which is not surprising in a text editor which already

implements a great deal of screen management software, ltelp texts are primarily pre-written, but are

generated dynamically in certain cases where the information is highly context dependent (e.g. a list

of valid commands, which depends on what extension packages have been loaded).



32 TIII:.I)ISIGN AND li'vAI;UAIION O1:ON-I_INI!l llil ,PSYSTFMS

Probably the most common complaint about these systems is thc lack of unilbrm availability of the

context-dcpendent help, This is because packages written in Emacs' extension languagcs do not have

easy access to the context-dependent help-mechanisms. This fact and the fact that the two help

system components are entirely independent lead to the characterization of Emacs as having an

extremely non-integrated help system.

Especially interesting is that, despite the structural similarities of the two systems, the TOPS-20

version of the help system generally seems to meet with much more approval from its users than the

UNIX Emacs help system. 'l_his is not the case with t'_macs in general, which seems to be better liked

on UN1X. Possibly the difference can be attributed to the fact that the menu system in UNIX Ernacs

is very loosely structured, fi)rming a menu tree that is too bushy and not deep enough. This

underscores the need for careful suucturing of a menu system, and may be seen as a failure of UNIX

Emacs to meet the general requirements of menu help systems. Of course, other factors may also be

responsible, but I have not yet isolated any. In general, the help systems are sufficiently similar in

mechanisms that it seems hard to avoid the conclusion that any differences are due to content -- help

text and menu structure -- rather than to the help mechanisms themselves. (The different perceptions

of"the |:,mars help systems may also be due in part to diffei'nces in their user communities, but the

perception seems to hold even among those who use both. Many UNIX Emacs users have moved

from TOPS-20 because they prefer the UNIX version, but remark that the only thing they miss is the

help system on the TOPS-20 version.)

3.1.3. UNIX

UNIX [118], the well known operating system which runs on a wide variety of computers, was

widely cited in my user surveys as an example of both a good and a bad help system. Its help system

is based entirely on the key word approach. There are two key word help commands. The man

command can be used to print out the entire documentation for a UNIX system command. The key

(or, on some systems, apropos) command will take a single key word as its argument and will suggest

a number of commands that may be related to the key word; such commands can then be looked up

with the man command. The system is entirely human-initiated. Access complexity is slightly higher

than it should be, in that there is really no reason _hy key and man need to be separate commands: a

single help command could act like man when its argument is a command name and like key when its

argument is not. System integration is also fairly poor: the help is olfly available from the top

command level, with a very few exceptions, and there is no special provision for the common

situation of choosing one of'the key command's suggestions as the argument to the man command.



ASURVliYOl: IiXISTINGIII!I,PSYST1MS 33

Presentation methods are erratic: The man command's output is paginated, so that it won't write

more than a screenfull of infonnation at a time. The key command is not so careful, but its output is

not often longer than a single page anyway. All of the texts are prewritten, although the key

command does select very small pieces of the provided texts. As in most systems where programmers

write the documentation, the text quality is erratic, but not as much so in a system such as TOPS-20,

where some of the text is quite good. On UNIX, the text is almost uniformly bad.

The popularity of the UNIX help system seems to stem from the fact that the key command

constitutes a reasonable index to the on-line manual. (That is, key words often suffice to find the

command you're looking for even if you don't know its name.) A few individual complaints about

UNIX's help centered on particular failings of this indexing scheme, which is useful but certainly not

optimal. (The key command only recognizes as relevant key words those words which occur in the

first line of a command's documentation. This is better than only recognizing a command name, but

not nearly as useful as a true thesaurus-based or explicitly-specified key word system.)

Other problems with the UNIX help system include the lack of any context-dependent help and

the incredibly slow performance of the man command. (The man utility reformats its help texts with

a text processor every time you ask for help, a staggeringly poor design decision.)

The fact that many users seem to like UNIX's help system despite its manifold defects is indicative

of the high value of key word help systems that can aid users who do not know the name of the

command they are trying to use. Aside from the mechanism which reformats help texts every time

they are printed, the UNIX help system is a fair example of a well-designed, nearly minimal key word

help system -- that is, a system which can help its users with only a modicum of actual help

mechanism. Experiments in this thesis, reported in Section 7.1, suggest that such a system is indeed

highly useful when the texts it provides are of high enough quality.

a. 1.4. PLOT

PLOT [30] is an interactive program for producing graphs from sets of data. PLOT provides key

word style help, but like TOPS-20 requires that the user already know the appropriate command

name in order to access this help. Some context-dependent help is available in the form of a list of

syntactic options at some (but not all) points in the command line. A very good tutorial for novices is

also available. In addition, a special provision is made l_brediting the entire manual with a text editor.

The system thus provides a wide variety of access methods, as an integral part of the application but

with the help access methods not at all integrated together. The presentation methods are very



34 TIll" DI!SIGNANI)I!V,\I UATIONO1,ON-I,INI-III.32SYSTI:,MS

simple, with text simply printed on the screen as if it were a teletype, but the text is generally

presented in small enough pieces that the user's context is not entirely lost: he can still see what he

was doing at the top of the screen. With the exception of the tutorial, tile initiative is completely the

user's. Quality of the texts, all pre-written, is unusually high, reflecting the fact that they were written

by a single author (lvor l)urham) who was highly concerned with making the system easy for novices

to understand.

PI.O'F's help appears popular primarily for its completeness, both in tenns of content and the

number of ways of accessing the help reformation. Its [hilings usually appear as failures of

completeness, which, given the enormous amount of effi)rt involved in its on-line help, points to the

desirability of a uniform help database. Typically, information available via one of PI,OT's help

mechanisms is not available from the others, so that users have to keep trying them until one is found

satisfactory. The lack of uniform availability of context-dependent help is also a deficiency. Thus

PLOT appears an excellent example of how a help system can be very good on most of the details

and still suffer from a lack of integration.

3.1.5. Shepherd

Shepherd [105] is a system designed to manage source files for SAIl, programs and to organize their

documentation. The system includes a component that serves as an on-line help system, organizing

the information about the SAlE library into a menu-like tree structure. The system is noteworthy for

the attempt to provide uniform documentation facilities for a variety of programs written by different

programmers in different contexts. Unfortunately, the program is extremely slow and the interface

cumbersome, so that the system was apparently never heavily used nor well-liked. This example

illustrates the importance of access complexity. Even with a fhirly large database of useful

information, the program was poorly utilized, largely because the interaction syntax was frightening.

As remarked before, this is even more likely to be prohibitive in a help system than in other

interfaces, because users begin using help systems with an already-high level of frustration and in a

state of acute awareness of their own ignorance.

3.1.6. CMU LISP

Before the reader concludes from the previous example that a complex access mechanism is the seal

of doom for a help system design, he should consider tile case of CMU LISP. CMU LISP [19] has a

large and apparently thorough static help system using a menu approach. As with Shepherd, the

mechanism for accessing the help is cumbersome. Each node in the tree of help menus has a unique



ASURVI!YO17I';XIS'IINGlllilP SYSIFMS 35

name, and must be accessed by it. 'l'ypically, each node also lists some other nodes that are related,

but provides no easy way for the user to get to it. Theretbre he must generally type "help" followed

by "help foobar," "help foobar.options," "help foobar.options.details," and so on. In addition to the

cumbersome syntax tbr help requests, the system suffers from primitive display methods and erratic

text quality.

Despite its flaws, which also include the total absence of context-dependent help, CMU I.ISP was

mentioned only positively in the user survey, possibly because so tbw programming language

environments offer any help at all. The system was praised for the completeness of its database,

which is of course a factor of overriding importance. Apparently users were generally able to get the

information they needed from CMU I.ISP's help system; the information was there and was not

impossible to obtain. In this case, the users were willing to forgive the system its other flaws. Future

designers of programming language environments, including syntax-based editors, would do well to

consider the popularity of CMU IJSP's help system, which had no context-dependent features at all,

before they devote too much time to the mechanisms of their environments and not enough time to

the contents of the messages provided.

3.1.7. TOPS-IO

TOPS-I0 is an operating systemthat runs on I)ECsystem-10computers. The Carnegie-Mellon

University TOPS-10 help system [18] is composed of just two commands used to access help in a key

word system. "Help <topic>" gets a short message explaining the topic, while "Doc <topic>" elicits

more details. Most topics are simply program names, but a few more general topics also exist. For

example, "help dialup" yields a list of phone numbers for dialup lines. There is no indexing and no

context-dependent help. The two commands are totally unintegrated, and the presentation method is

the most basic possible: the texts are printed on the screen without even a pause as the page fills up.

Texts are of predictably erratic quality, given that they are written in general by the implementors of

the programs they describe.

In short, TOPS-10 help is about as simple and primitive as possible, with the exception of the

unusual fact that there are two levels of detail available. Nonetheless, this simple fact was enough for

several users to single it out for praise. This appears to indicate a great appreciation on the part of

users for some structure in the help database. Those who commented favorably about this aspect of

TOPS-10 help appeared to be mostly people who had otherwise used only systems that provided all

the help in a single undifferentiated mass. Again, users are so accustomed to absolutely minimal help

systems that they are grateful for even the smallest improvements.



36 T111!I)I!SIGN AND i'VA1 ,UATION OF ON-i .INI.21IF.IP SYSTEMS

3.1.8. Lotus 1-2-3

l.otus 1-2-3 [84] is an interactive spreadsheet/database program on the IBM PC and other personal

computers. It incorporates (as one of its major selling points) a veFy impressive help system. The

basic system is menu-driven for commands, with one menu item always highlighted on the screen as

"selected." A second-level menu is continuously updated to display what the menu choices would be

if the currently selected menu item were chosen. This provides a form of context-dependent help

without human initiative. In addition there is an elaborate static help menu, which is often entered in

a context-dependent manner -- the starting help menu is chosen according to the user's context. The

texts are apparently all pre-written and are of extremely high quality, reflecting an obvious emphasis

on documentation by the Lotus Development Corporation. As one would expect in an integrated

system such as Lotus, presentation methods are sophisticated, with the screen carefully managed to

preserve context when possible and to restore it later when it was necessary to overwrite important

state information with help texts. The complexity of help access is extremely low; it is an excellent

example of what a menu-based help system should look like.

The menu itself is generally very weil-stn_ctured, making it very easy for novices to learn about the

system. For experts, the story appears slightly different. The one experienced Lotus user I was able

to interview did not think very highly of the on-line help, because she was unable to easily get

answers to specific questions. The menu system apparently thwarted her in her quest to quickly

answer such questions. This suggests that even the most elaborate menu systems may be insufficient

as complete help systems, and that a key word component will be extremely valuable to experts.

(I.imiting a help system to step-by-step traversal of a menu network seems a bit like taking away a

driver's mode map and forcing him to find his way over a long distance using only road signs.)

However, since file user reported that she often simply could not find what she wanted with the help

system and resorted instead to the printed manual, another explanation is possible: it may be that

Lotus' help database is simply not sufficiently comprehensive. Obviously if the information isn't

there, the user can't find it, no matter how clever the help access mechanisms might be.

3.1.9. RdMail

RdMail [67,31], a TOPS-10 mail management program, was singled out for a large number of

comments, both positive and negative, in the user surveys. Its help is entirely key word based, but

with sufficient indexing to make it quite often useful even when the user does not know the name of

the command he needs to use. The system uses key words as indices into the printed manual, and

prints out the sections that seem to match the key words. No attempt at screen management is made.



A SURVI!Y OI: I:XISTING l llil .I' SYSTI!MS 37

_l'hetext quality is quite good, reflecting the effort that went into the writing of the R.dMail manual.

'l'he help sy_,,temis simple to use, and since only one help mechanism and one command level are

provided, integration is not really an issue. There is no notion of levels of explanation, and no

context-dependent help except in the correction of spelling errors.

A common complaint about RdMail's help system was the volume of material help requests can

elicit; typically a help request will cause RdMail to select a half dozen or so paragraphs of help text,

and will show you the heading of each and ask if you want to see the entire section. 'l'his illustrates a

problem that comes as a natural consequence of a thorough key word index: too many commands

may match a given key word. In such a system, it is important to provide a simple mechanism --

some form of menu selection is the obvious choice -- by which the user can choose among many

possibly relevant topics. RdMail asks a yes or no question for each such topic, which is time-

consuming and often frustrating for the user, since the desired information is just as likely to be asked

about last as first.

Another common complaint about RdMail is that the key words are simply poorly chosen; it is

difficult at first glance to reconcile this with the complaint that key words yield too much

information, but lhey may in fact be the same problem. Users who begin iterating through the many

choices key word produces in P,dMail may simply conclude that they have chosen the wrong key

word and give up, never realizing that they had the right key word but simply had to sit through a

large number of wrong choices before RdMail would give them the right one.

3.1.10. Ci

Ci [106] is a command-interpreting front end for UNIX application programs. It provides key

word static help, using short descriptions for its indexing much like the UNIX key command

described above. It also provides a special character ('*') for requesting context-dependent help;

placing this character in a command line turns the command line into a request for syntactic help in

many contexts. Texts are supplied by the application programs.

Ci is interesting primarily in contrast to TOPS-20. TOPS-20 offers a less complex help interface --

typing a question mark in the middle of a command line, and maintaining contexL is certainly easier

than typing an entire line with an asterisk marking the missing information -- but ci integrates the

context-dependent and key word help systems to a greater degree than TOPS-20. In TOPS-20. the

application programmer may design his subcommand interface to utilize the built-in help

mechanisms only for context-dependent help, whereas ci-based UNIX applications can take



38 TIIE I)ESIGN ANI) I!VAI [!ATION O1:ON-I_INI.'_111!iP SYS iFMS

advantage ot'both types of help. Unfortunately, the number of el-based applications is not very large,

so it is not possible to tell fiom experienced users whether this does in fact make the ci help facility

significantly better than TOPS-20's.

3.1.1 1. VM/CMS

VM/CMS [58] is a widely-used IBM conversational operating system. It incorporates a menu-

based help facility that seems very complete with respect to the programs documented, but less

satisfactory with regard to fundamental concepts of the system. ,,\ modicum of context-dependent

help is provided as context-dependent entry to the menu system. One bad feature of the system as a

whole is the complexity of its user interface; most programs can take commands either via a

conventional command line or through a sophisticated graphical interaction program, but the two

methods of giving commands are not equally well documented in most cases, for no apparent reason.

This is a difficult problem to avoid: the difficulty of providing a coherent integrated help interface

seems to increase dramatically as the fundamental underlying complexity of the system increases.

Those who regard the fundamental VM/CMS interface as too complex would probably claim, with

some justification, that trying to fit a good help system onto such a complex underlying domain is a

task doomed fl'om the start.

3.1.12. SARA

SARA [34,35] incorporates an experimental help system most noteworthy for its representation of

help reformation rather than for its presentation of it. Help is available through queries of a static

database in a rigid command language, although what is actually happening is quite similar to the

CMU MSP method (Section 3.1.6) of accessing a menu network by giving the lull name of each help

frame. The ability of the system to provide context-dependent help is restricted by the inability to

process input one character at a time, which xirtually rules out meaningful context-dependent help.

SARA was probably the first system to approach on-line help as an integrated database to be

probed with multiple access methods. As such, it was a significant landmark, inasmuch as the

integration of multiple help functions is considered to be an important component of good help

systems. However, most of the work on the SARA system focused strictly on that database

representation of help information; after it was constructed, only a single help access method was

actually implemented to use it! The data representation used in the prototype help system described

in Section 5 is derived in some measure from the representation used in SARA.



40 TIIF.DI'SIGNANDIiVALUAT1ONOFON-HNIIItELPSYSTEMS

3.1.16. ANLHS

AN1.HS[117] is an ambitious attempt to design a natural language question-answering help

facility. The author is principally interested in the knowledge representation aspects of the problem,

and is apparently largely ignoring the interface with the end user. (This system will receive help

requests in a formal language, and is not designed as the front end of the final system.) Several

efforts are currently urider way to apply natural language to the domain of help systems, but the

experimental results reported in Section 7.1 tend to cast some doubt on the general usefulness of this

approach.

3.1.17. ZOG

ZOG [97,99, 101] is the menu system par excellence. The ZOG system was developed as an

integrated user interface based entirely on menus. The system includes a well-fleshed-out help

system, which is naturally entirely menu-based. (ttowever, the fact that help is always invoked from

some known previous menu loation allows the help to be somewhat context-dependent with no

special effort at all.) The system places a premium on integration, and the help facility is entirely

integrated with the system as a whole. The system evolved in an atmosphere of extensive testing and

refinement of all of the details of the system, with the predictable result of a smooth interface,

minimal interaction complexity, and high quality texts and presentation methods.

Because the help system is embedded in an interactive system that is entirely menu-based, the

menu approach appears to completely eliminate the need for syntactic help. This is in keeping with

the general ZOG philosophy of an extremely straightforward and consistent user interface. With

such an interface, help needed is nearly always conceptual rather than syntactic, and for this menu

help seems to suffice. However, this sufficiency of menu help probably does not generalize to the

non-ZOG environment, where command syntax can be extremely complex, and where large

branching factors may make a menu system unwieldy.

3.1.18. COUSIN

The COUSIN project [42, 50, 51, 52, 53] has been an evolving series of systems investigating

cooperative user interfaces. In its early versions, COUSIN used ZOG's menu system to automatically

generate help of various kinds for non-ZOG interfaces. This has manifested some of the fragility of

the success of ZOG's help facility. In the non-ZOG context, help was not always sufficiently cross-

referenced, with menu frames taking on inappropriate sizes and inadequate links. Nonetheless the



ASURVEYO1:I.'.XISTING111!1I' SYSI'FMS 39

3.1.13. How?

HOW?[56] is an associative network-based help facility for IJSP, most interesting for its

knowledge-based approach. The help database is a network suitable for normal menu travei,'sal, but

may be accessed via key word requests which are interpreted in a sophisticated and flexible manner,

using a complex I.ISP program. It provides no context-dependent help, and the presentation and text

quality have not been emphasized, since the research has focused on knowledge-based interpretation

of help requests.

Such interpretation focuses primarily on questions of customization and user state and history. The

primary advantage that this knowledge seems to offer over more naive key word approaches is in a

pruning of the search space for highly ambiguous requests. The idea of using knowledge about user

state, preferences, and history to disambiguate help requests has obvious appeal, but it will probably

be a difficult one ever to test conclusively. Such tests would of necessity monitor users over a rather

long term, as they developed a history of using the system. Thus it is unlikely to be seriously tested

until an implementation is carried to the point of being practically useful in a well-used environment.

3.1.14. The IA Tutor

The IA Tutor [103] is an on-line intelligent tutor for a specific application, namely a military

message service. The tutor uses a fairly simplistic knowledge representation to guess about the type

of help a user needs, utilizing in the process a fairly extensive user profile for customization and

individual tailoring. As with HOW?, there is no evaluative data available, and the "intelligent"

component can not easily be studied outside its unique task domain.

3.1.15. WIZARD

WIZARD [37, 109] is a knowledge engineering effort that produced a small help system able to

volunteer advice based on preconceived "plans'" and "bad plans" it hypothesized might be in the

user's mind. As such, it is an unusual example of a help system in which the initiative rests ahnost

entirely with the computer rather than the user. It apparently does a good job helping novice users of

VMS, but would require a great deal of effort (both initial and ongoing) to become a practical help

system for VMS in general. Such systems will need to be much more thoroughly understood before

they can be integrated with the kinds of help discussed in most of this thesis, and before they can be

studied in sufficiently complex domains to be rigorously tested against more conventional systems.



A SURVI!Y O!: F.XISI'iNG 1ll'.'I.PSYSTI"MS 41

system demonstrated that much can be done by way of generating both static and context-dependent

help from a static database.

I.ater COUSIN systems have offered more sophisticated context-dependent help in the context of

its unusual interaction methods. Such help methods correspond closely to the kinds advocated in this

proposal. In general, though, COUSIN has concentrated on minimizing the need fi>rhelp rather

than on giving elaborate help, so the help systems that have been implemented have not been fleshed

out with sufficient texts to test them thoroughly. A fascinating tepic for future research would be to

develop a version of COUSIN that incorporated some of the help techniques recommended here,

and to test various subsets of that COUSIN to see which features are most important for enabling

novice and expert users to execute unfamiliar tasks. Without such studies, it is virtually impossible to

weigh the relative importance of graceful interaction paradigms and clever help systems.

3.1.19. STAR

_lt_eSTAR system t111] is a workstation that uses icons and graphics to provide its fundamental

interaction mechanisms. STAR provides key word static help, with help entries pointing to other

entries in a menu-style network, without menu access mechanisms. A limited amount of context-

dependent help is available in the fi)rm of context-dependent behavior when help is invoked.

Syntactic help is apparently not provided because it is expected that the unusual interaction paradigm

of the STAR system (graphics and icon-based) will eliminate most of the need for such help. The

validity of this expectation remains untested.

3.1.20. The Berkeley UNIX Help System

A new help system [66] in use at the University of California at Berkeley utilizes the UNIX

directory structure as an easy way of implementing a tree-structured menu help system. The system

allows for progressive deepening and can suggest related topics using this menu mechanism.

However, as with some of the od_er menu-based systems reported above, this help system requires an

extremely baroque syntax to specify movement through the help menus. As such, its practical

usefulness is questionable. Since the system has been released for general use at Berkeley, it seems

likely that these questions will be answered, and this system as it evolves should provide some

interesting data on the usefulness of menu-based help systems with awkward access mechanisms.

However, no such data is yet available, as the system is still brand new.



42 Till:.DI-SIGN ANDI!VAI.UATIONO1:ON-I.INIiliI!I.PSYSTEMS

3.1.21. UC: The UNIX Consultant

Wilensky [122] reports on an experimental help system that answers questions about UNIX in

natural language. Unfortunately, the system is both too slow and insufficiently broad in its database

to be useful to real users, but it demonstrates that natural language may in fact eventually be

practical, from an implementation standpoint, as a help system interface. Whether this would be

desirable is another question, and the results reported in Section 7.1 of this thesis cast doubt on the

entire enterprise.

3.1.22. The MACSYMA Consultant

Genesereth [40] described a help system for MACSYMA that would utilize a knowledge base to

analyze user help requests in terms of faulty plans, goals, and so on. As such it is a clear precursor of

the WIZARI) system reported above. However, it is unclear whether the MACSYMA consultant

was ever completed, as I have been unable to locate any later articles; the article cited described a

nearly-completed, untested system.

3.1.23. BROWSE

IW,OWSE [11, 12] is an on-line system for providing help for UNIX. It is an extremely powerful

static help system, integrating excellent menu and key word help. However, it is implemented as a

stand-alone utility, which means that it has no context-dependent help and cannot preserve the user's

screen context when it is invoked. The system has also been used as the front end for a system for

viewing structured text [124]. In general, it looks like ZOG with keyword help attached, but designed

to run on lower-cost display hardware than is required by ZOG.

The BROWSE system described above should not be confused with the identically named sytem of

Palay and Fox [82], a system designed to facilitate "browsing through databases." The latter system

integrates menu-based "browsing" with more traditional parameterized search of a database. In the

database system, of course, parameterized search can reasonably be much more complex than a

simple key word, but such complex search expressions are less clearly desirable in the narrower

context of on-line help.



ASURVFYO1:I,_X1STINGIIEIJ_SYSTEMS 43

3.1.24. INTERLISP DWIM

lnterlisp's DWlM facility [116] is not a help system in the sense studied in this thesis, but is worth

noting as an example of the extreme toward which some help systems seem to aspire. DWlM slands

fi)r "I)o What 1 Mean", and can be used to correct a large number of syntactic errors in Interlisp

programs, either automatically or with user c¢)nfirmation. DWIM is able to be successful in this

effbrt largely because of the extremely regular and straightforward syntax of I,ISP. Applying its

techniques in less regular domains will inevitably yield less spectacular results, but is certainly worth

studying.

3.1.25. SPF

The IBM System Productivity Facility [59] incorporates a sophisticated help and tutorial system.

The system is essentially menu-based, with a strong bias toward walking a "standard" path through

the menu network, but it also provides limited facilities for keyword search through the network,, and

allows context-sensitive invocation of help (that is, the root menu fi'ame varies with the context in

which help is requested). The SPF help facility appears to be entirely integral; documentation and

application program are inextricably bound together at the programming level.

3.1.26. Symbolics Sage and Document Examiner

Janet Walker's work on on-line documentation [119, 120] has produced interesting results in two

areas relevant to this thesis. Her Sage system [119] provides a highly structured mechanism for

constructing help databases, rather like Fenchel's SARA or the ACRONYM system developed for

this thesis, but with a more rigorously constrained document structure. Whether such structure is

good, of course, depends on whether the basic parts chosen for that structure are the right ones,

which is a difficult assessment to make. However, Sage clearly provides more power to the

documentation writer than the other systems, by virtue of its highly structured and integrated

environment, possibly at the cost of making the documentation occasionally strained to fit into the

prescribed format.

A more recent development is the Symbolics Document Examiner [120],a system utilizing the large

high-resolution display of a 1.isp Machine to provide help via key word and menu selection, with an

unusual facility for using "bookmarks" to remember the user's previous history of especially

successful help requests. The system can be accessed in a context-dependent manner, at least when

looking at a IJSP program. It appears to correspond closely to the state of the art in help systems,



44 TI 1I_I)FSIG N AND F.VAI.UA'IION O1: ON-IINI- IlI!I_P SYSTI!MS

something like the ACRONYM system developed here, but designed to take advantage of modern

workstation display technology. As of this writing, no description of the l)ocument Examiner has

been published.

3.1.27. CRAS

The on-line help system for CRAS (Cable Repair Administrative System)[43] at A'I'&T reflects a

deliberate effort to integrate on-line help with on-line documentation design and more traditional

user's manuals. Special facilities are provided both to reduce the need for paper documentation and

to provide tools to help users keep their paper manuals up-to-date. The help system is highly integral

to the CRAS application system, even utilizing CRAS file structures and software as part of the help

database.

Despite the care given to complex information handling, CRAS's help system is extemely limited

from the user's end. There is no context-dependent help, no menu system, and no keyword help

worthy of the name. Instead, a few simple commands are used to extract help from the database, and

ti_c relevant application programs tell how to get that help as part of their error messages, e.g. "For

more detail type: prtdoc cmd.rpt02". Thus, despite the complexity and effort inw)lvcd in the

database, CRAS's help offers very little in the way of help fimctionality to the user. If, however, this

is the price which the designers paid in order to make the actual help texts extremely readable and

usefifi, then the results of this thesis tend to validate that tradeoff. Unfortunately, the published

description of the system gives no indication that text readability was emphasized, and no samples of

the actual texts.

3.1.28. DOCUMENT

DOCUMENT [41] is a help system primarily geared to producing on- and off-line help from key

word requests, where all key words were supplied explicitly by the document designers. The system

is especially notable for its support of multiple interaction styles; there are three levels of expertise,

and the verbosity of prompting and error messages varies with the expertise level. Expertise level

may be specified explicitly, but the system will sometimes revise its estimation of a user's expertise

based on that user's actual performance. I)OCUMENT is also noteworthy for the care given to

integrating the delivery of paper and on-line help in an extremely complex user environment.



A SURVI-Y O1: EXISTING l llilP SYSTEMS 45

3.1.29. Thumb

Thumb [85] is a system that weds on-line help to the kind of search mechanisms generally reserved

for infrormation retrieval systems. Documentation is carefully encoded in such a way as to finely

describe its structure, and is then accessed with complex search commands. The resulting language is

extremely powerful but baroque; the paper on Thumb [85] cites an example in which "about rain

interacting with night" and "about rain occurring with night" match different sets of texts for which

"rain" and "night" are keywords. Although file primary mechanism is this kind of complex keyword

search, menus are provided at points of ambiguity. Context-dependent help is apparently not

provided. The complexity of the mechanisms suggests that such methods may remain more

appropriate for general information retrieval than for the specific task of on-line help.

3.1.30. Transition Diagram-based Help

Feyock[36] describes a planned help system which would utilize a transition diagram

representation of the user's state to generate help messages. In his discussion of the representatkm of

the user's state, Feyock anticipates much of the command grammars that have been used

subsequently, including in this thesis. He gives little attention to user input, which he correctly sees

as being easily implemented in a number of ways with the single database. More surprisingly, he

completely disregards the role of help texts, assuming instead that the representation of a state in the

command grammar will easily yield readable help messages: "'Once such a [regular] expression has

been generated, a simp/e recursive routine suffices to output the regular expression in a quite readable

format." The results of this thesis, however, suggest that the construction of readable texts is the most

important single part of help system design. At a minimum, it must be said that there is no evidence

at all to support Feyock's claim that automatic generation of texts can, in our current state of

knowledge, produce high-quality help messages.

3.1.31. ACTIVIST and PASSIVIST

Fischer, et al. [38] describe a knowledge-based help system that can act both actively (making

helpful suggestions, in a manner similar to the WIZARD system described above) and passively,

interpreting help requests given in natural language. They concentrate on the underlying knowledge

representation supporting the help systems, rather than on the details of the user interface. As with

WIZARD, there is no evidence presented to prove that the knowledge-based systems actually gain

anything over the more traditional approaches, but instead the authors accept this as being simply

obvious to anyone who considers it.



46 TIlE DESIGNANDI:VAIUA'IIONO17ON-I,INI!lll.il,PSYSTEMS

3.2. Perspectives from Other Domains

In thinking about help systems, it is useful to think not only about what has been done in on-line

help for software, but also about analogous methods that have developed in other domains in

response to the problem of informing the us'er about the tool at his disposal. A comprehensive survey

of such areas is beyond the scope of this thesis, and indeed is probably impossible. However, I will

discuss here a fcw of the rclated problems that have hclpcd mc in thinking about help systems.

Hcckel's enjoyable book [54] gocs into much greater dctail with a large number of analogies relevant

to interface design.

3.2.1. Highway Navigation

In navigating an automobile, there are two primary help systems. The road map is a static help

system, which provides a stable and (it is hoped) consistent picture of the task domain. This is most

useful for general orientation and for high-level planning, as well as for problem-solving when errors

occur. Road signs, the second help system, are by contrast highly context-sensitive, and are useful

primarily for making low-level decisions in a hurry (e.g. "I)o I turn here? Right or left?")

The driver of a car on the U.S. highways today faces a system as vast as nearly any software system

yet devised, but despite well-known and oft-discussed exceptions, generally manages to find his way

with little trouble. Why is this so?

To begin with, the driver usually benefits by well-defined context. It is exceedingly rare to see a

road sign in California that points to Manhattan, which is as it should be given the percentage of

drivers in the area whose ultimate destination is on the East coast. Indeed, it is unlikely that more

than a small fraction of California drivers even have a map of New York in their cars. This is in sharp

contrast to the typical computer user, whose "road maps" are the myriad paper manuals that line his

walls, even if he has no intention of ever using most of the features they describe, and whose "road

signs" are most often on-line help systems that point, with equal cheerfulness, to every feature on the

system. (A road sign comparable to such help systems might read "Exit 22: Ho Chi Minh City, New

Delhi, Spokane, Chicago, Forbes Ave.")

Of course, most computer systems do not begin with the clear usage patterns and locality of

reference characteristic of a highway system, but this does not mean they cannot evolve in such a

direction. Certainly it is reasonable to imagine a help system smart enough to say, "Hmm, this user

doesn't do anything but word processing, so I really don't need to tell him about the debugger's



A SURVEY OF EXISTING I II:,I_PSYSTEMS 47

symbol table even if he did type 'help symbol'." Moreover, it is also reasonable to design future

systems to promote a clearer division of task categories, which will facilitate context-sensitive help.

Consideration of the imaginative generations of work that have designed the modern road map are

also worthwhile. A road map is a static picture of a very large object. Nearly every such map,

nowadays, comes in a very unusual form: an enormous page of paper cleverly folded to facilitate

looking at smaller parts of it at a time. Perhaps computer manuals can be imaginatively reformatted

to facilitate a large number oflaelp situations. Some of the conventions used in maps -- most notably,

insets showing details at different scales -- may also be relevant.

There is a large amount of literature on traffic signs and marking, some of which I surveyed in my

research on help systems. While surveying it, I dismissed it as generally irrelevant, much to my

disappointment, because it concentrated on such "mundane" factors as the proper height of lettering

on the signs, the proper colors of signs, and so on. (See, for example, [70].) In retrospect, given the

results of the experiments reported in this thesis, it seems that I might have properly regarded this

emphasis as a warning that my preconceived notions about what is most important in a help system

might have been entirely misguided.

It is also worth considering, with regard to the current vogue for iconic user interfaces, the system

of international symbols that has come, in recent years, to decorate the world's roads, airports, and

other public places. Nearly everyone can tell a story of coming face to face with an international

symbol, designed to be meaningful even to savages from the most obscure corners of the globe, and

being utterly baffled by its meaning. Many iconic interfaces coming onto the post-Macintosh market

seem equally poorly chosen.

3.2.2. Driving a Car

For better or for worse, most people seem to learn to drive both their first car and any subsequent

car without once opening the owner's manual. That they prefer to do so is a motivation for designing

"self-evident" software. That they are able to do so is a motivation for studying the layout of an

automobile's controls.

The basic controls of an automobile are, of course, relatively uninteresting and the same for nearly

ever car. Steering wheels, brakes, and gas pedals are the apparently inevitable results of decades of

tinkering with real people operating real machines. The few points of variation are relatively minor,

enough so to be easily indicated by a small picture, as in the map that tells where the gear positions



48 TIlEI)F.SIGNANI)I:VALUATIONO1:ON-I,INI!lllil.P SYSTEMS

are on a manual transmission. 1)esirable though such a situation evidently is, it seems unlikely to be

matched by software systems for a long time.

More interesting is the design of the peripheral controls -- such things as the lights, radio,

windshield wipers, and so on. With less intrinsic reason to standardize, these features vary wildly

from one car to the next. In most American cars, the controls are labeled in English, but increasingly

cars are built for worldwide distribution, and are labeled with cryptic and often meaningless icons.

How do most people deal with these peripheral controls? Trial and error. Each dial is turned, each

switch flipped, each knob pulled, until the desired effect is achieved. Crucial to this process are two

assumptions on the part of the user: none of the controls can produce a harmful effect, and the set of

things he'll need to try is very small. These assumptions arc virtually never true for software systems.

Help systems can only sometimes help to make them true, and hence to facilitate explanations; more

often, it is in the underlying application interface design that these assumptions are violated. That's

one reason people use software manuals more than the owners' manuals for their cars.

3,2.3. Small Appliances

The average American today uses a wide variety of small mechanical devices that, seemingly at

least, make his life a bit easier. While the quality of the instructions that accompany these devices

varies substantially, some of the techniques used in the better ones seem applicable to help systems.

Most notably, some food processors and similar appliances have a few pictures on them, carefully

designed and strategically placed, that seem to entirely obviate the manual for most situations, q_is

technique of designing for the most common need is virtually never applied in help systems, but would

be obviously useful there. Most help systems require the stone amount of effort to answer the

simplest questions as the hardest and least common ones. (In fact, the ACRONYM system described

later in this thesis shared that deficiency, and even made some of the simplest tasks harder to get help

for than some of the genuinely difficult tasks. See Figure 7-5, on page 99 and the accompanying

text.)

3.2.4. Human Experts

Of course, the best help systems for almost any applications seem to be human experts. Such

experts offer at least five things other systems generally lack: spoken input, spoken output, natural

language, immediate recognition and processing of feedback when explanations are inadequate, and

empathy. The importance of any of these should should not be underrated.



RI:.II:VANT PRi'_IOUS RI:SF,ARCII 49

Chapte r 4
Relevant Previous Research

The literature describing human factors research on computer software is small but growing..The

subset of that literature that is relevant to on-line help systems is extremely small. On--line help

systems have been as neglected by human factors experimenters as they have been by programmers.

For example, Mudge [77] wrote a dissertation entitled "Human Factors in the Design of a Computer-

Aided Instruction System" and, despite being generally quite thorough, managed to avoid making

even a single mention of on-line help.

Thus the amount fl_at is actually known is not great, but at least a comprehensive survey is still

possible. In this chapter. I will discuss the major experiments with results relevant to on-line help

systems. Since details about actual hclp systems were collected ip.the pre_ious chapter, this chapter

will focus on more general work, reporting relevant experimental results, critical surve._,s,technical

notes, and more general psychological and text-related perspectives.

4.1. Surveys

Only a few papers have surveyed the state of the art in on-line help systems. Sondheimer and

Relies [113] present an excellent survey of the various methods by which help systems can be studied.

However, they then concern d'_emselves largely with issues of implementation, and make some

unwarranted assumptions about what help systems oughl to look like. Houghton [55] surveys _arious

techniques available in help systems and related aspects of user interfaces, but does not go into any

significant depth about any of them. Shneiderman [108] surveys primarily the relevant experimental

results. Christensen [17j surveys actual existing help systems.



50 iI 11!DI!SIGN ANI) i!VAIUAT1ONO1:ON-I ,INI! Ili,I,P SYSiI-MS

4.2. Experimental Results

The few experiments that have been reported with regard to on-line help present a mixed bag of

results, generally discouraging. F'rom the published literature, it would seem that on-line help holds

little l)romise for actually helping real users. Most of this phenomenon, however, can probably be

accounted for by the fact that the experiments were conducted using rather primitive help systems.

This may be inevitable, given the fact that psychologists don't build complex software systems, while

programmers who do build them don't generally run experiments testing them. "l'he current thesis is

designed in large part to address this phenomenon.

Magers [73] describes an experiment in which a fairly unsophisticated help system is modified in

several simple and easy ways to yield a new system that is significantly more useful for novice users.

This study demonstrates the importance of such non-technical "details" as text quality, command

names, and non-technical orientation. Unforttmately, the study suffers from a major confounding

factor: while it demonstrated that one of the two systems was better than another, it could not

pinpoint which of the differences were responsible, and the systems differed in man}' small ways. In

the absence of a complete theory behind the experimental design, the results are open to multiple

interpretations.

O'Malley et al. [81] report that after extensive observations of the actual usage of the UNIX help

system, they determined that it was used in three distinguishable types of situations: for quick

reference, for task-specific help, and for ffdl explanations of commands. The latter is what UNIX

already provides, and the former is easily provided, as indeed it was in a related study [5]. However,

the second type of help, which the authors call "task-specific help", requires help that presents an

integrated perspective on several separate system ffmctions, a kind of help not often found in working

help systems.

The later Bannon and O'Malley study [5] reports on the evaluation of a quick-reference help

facility designed to supplement the standard UNIX hell) facility. Their paper focuses on the

difficulties of evaluating such systems, and discusses several possible approaches to such evaluation.

Apparently without having actually run any controlled experiments on the system, they conclude that

controlled experiments are not useful in evaluating the high-level design and utility of the system. In

their own words, "A more controlled study wotfld be appropriate for the purposes of debugging the

specific display design, after we had determined the usefulness of this type of facility." [5, page

6g] This conclusion seems to be contradicted by the results of this thesis, which demonstrate that even

the most basic high-level decisions that are made in the design and infonnal testing of a user interface



RI,_II!VANT t'I,',I'IVIOUSI_,I;_SI_ARCll 51

can be completely wrong when reached by simple subjective ewduations. (Bannon and O'Malley

would not be likely to deny that such decisions are otien wrong, but merely that controlled

experiments can help get them right. 'l'his thesis is an argument that they can indeed help, but only

with the enormous amount of effort that went into the experiments reported here.) Of course,

Bannon and O'Malley relied on interrnediate methods -- not wholly subjective, but not rigorously

controlled experiments. In the context of this diesis, their methods -- primarily long-term monitoring

of real usage patterns -- would have required as much effort as did the controlled studies, and the

results at best could not have been any more reliable.

Mantel and Haskell [74] analyze in detail the experience of a first-time microcomputer user and

find that 54% of that novice's problems were related to the system documentation rather than to the

interface itself. 1'he authors make some suggestions about the causes of this phenomenon in terms of

the conceptual orientation of the texts, but the study is equally valid as an argument for much more

sophisticated help systems. Primarily, their study demonstrates that much of novice users' problems

with computers may be related to inadequate help and documentation.

Draper [27] extensively analyzes experts' command usage on UNIX, and concludes that the notion

of "expertise" on a complex system such as UNIX is highly misleading. He finds that so-called

"experts" may know virtually non-overlapping subsets of the entire system, and act much like novices

outside of their domains of expertise. He suggests, in fact, that the only real measure of expertise may

be a user's facility with the help system -- that is, his ability to use the available help to learn what he

needs to know. This conclusion, if correct, might help explain the surprising results o1: the

experiments on experts using help systems reported in Section 7.4 of this thesis.

Mack, Lewis, and Carroll [72] report on studies of novices learning to use word processors. They

conclude that the help systems were totally ineffective for their users because the help was oriented to

answering specific questions, whereas discerning the right question _as often the crux of the subjects'

problems. This reinforces the importances of examples, tutorials, and concept-based help, which

were apparently not provided by the help system on the word processor in the study. (The authors

described the help system as "state-of-the-art" without elaboration.)

Bott [10] reports extensively on how naive users learn a simple task on a computer. Perhaps the

most interesting and relevant conclusion he reaches is that analogies in help infonnation can be

highly misleading, producing "blind spots" when the analogy is not quite exact. This concern is

echoed in a later article by Halasz and Moran [48].



52 TI IF DI:SIGN AND FNAI..UA'I 1ON OI: ON-LINI- 1IEI,P SYSTEMS

Lang, Auld, and I,ang [69] study the goals and methods of users trying to accomplish various

simple tasks, and concludc that documentation is most useful when it is extremely short and to the

point. This suggests that on-line help access mechanisms can bc of great value if they can quickly

direct the user to a short piece of text without making him look through a large body of irrelevant

information.

For the computer scientist contemplating experimental research, examples and guidelines for

experimental design are invaluable. Aside from gcneral texts on experimental design

[13, 57, 123, 125], there are several texts that dcmonstratc successful experimental methodologies in

user studies of software other than help systems. Card, Moran, and Newell's book[14],

Shnciderman's book [107], and Reisner's survey [88] summarize the state of the art to a large degree.

Enlightening examples of well-constructed specific studies include the Roberts and Moran

experiments [8, 93, 94, 95], Robertson, et al. [96, 97, 98, 99], Dzida, et al. [32], Black and Moran [7],

and Loo [70].

4.3. Relevant Results from Psychology and Document Design

Research

Compared to the paucity of actual help system research, an enormous amount of work has been

done on the psychology of human-computer interaction and on the design of technical

documentation. Summarizing all of this work is beyond the scope of this thesis; indeed, it might

require a thesis-sized work in itself. Here, however, I will mcntion several highly relevant work

which either summarize results from those fields in a manner relevant to help system design, or

otherwise provide valuable insights for the design of help systems. This section should by no means

be considered to be exhaustive.

The problems of naive users learning to use on-line systems have been discussed in many articles.

Kennedy [62, 63] has advocated a number of specific remedies for these problems, including some

unspecific recommendations for on-line help ("A HELP key or command ... is essential to give

confidence to a casual or naive user." [62, p. 319]) Other worthwhile work discussing the needs and

motivations of individuals learning to use computer systems has been done by Anderson [2, 3], Bott

[10], Moran [75, 76], Nicholson [78], Norcio [79],and Rosenberg [102].

The problem of document design has received an enormous amount of attention. Much of this

work is summarized in a set of document design guidelines by Felker, et al. [33], which draws on a

wide range of research in this area.



REIJ'VANT PREVIOUS RFSEARCII 53

Several studies [45, 46, 47] have demonstrated that reading from a standard video display screen is

significantly slower than reading from paper, although the differences seem to go away with larger

screens and higher resolution.

As a global motivation of studies such as this one, tile study by Sproull, et al. [114] is a compelling

demonstration of how far computer scientists still have to go to make computer systems less

intimidating to new users. In this study, college freshmen responding to a carefully constructed

survey indicate that the fear, frustration, and sense of inadequacy generated by introductory

computer courses dwarfs any other terrors the university can offer to its undergraduates.

In addition, studies done at IBM [23, 24, 25] have dramatized the importance of response time for

productive user interfaces. These studies suggest that rapid response time is an ideal worthy of more

than lip service, for a small increase in response time can, at least for certain kinds of tasks, lead to a

much larger increase in total task execution time. These studies should serve as a red flag to all who

believe that it is reasonable to trade off speed for power.

4.4. Technical Research on Help Systems

Finally, a small amount of useful work has been done with regard to the actual implementation of

help systems. In a sense, it is surprising that any work at all in this area could be useful, since in the

absence of any real understanding of what a help system ought to look like it is premature to describe

how it should be implemented. Nonetheless, a few authors whose work has included good ideas on

the design of help systems have also contributed information on their implementation.

Fenchel [34] built the first help system to maintain all of its help in a single coherent database, thus

making it possible to consider providing several kinds of help in an integrated manner from such a

single database. Unfortunately, his work focused so much on the implementation that he never did

build more than a single access mechanism, but the implementation work was quite interesting, and is

a clear ancestor of the prototype system built for this thesis.

Sondheimer and Relles applied the same knowledge that produced their survey article [90] to

produce a specification for a unified approach to on-line help systems [113]. This latter paper is

clearly preliminary to a new implementation effort, and describes a comprehensive framework for the

implementation of such a system. The authors may actually assume too easily that the proper design

of such a help system is understood -- at least, it is obvious that they think they understand it -- but

given the nature of the design they propose, their discussion of implementation techniques is very



54 Till! I)I:.SIGNANI)liVAl,UATIONO1:ON-IJNI!ltl;JJ' SYS'IEMS

useful. An earlier paper by Relies and Price [89] goes into great detail about the architecture of a help

system they built, describing primarily how the programmer interface to a highly flexible system was

designed.

A few of the morc experimental help systems reported in the literature actually are reported more

heavily f_r their implementation techniques than their interaction facilities. These include especially

the knowledge-based help systems such as Finin's[37, 109], Wilensky's[122], Howe's[56], and

Genesereth's [40]. These papers are of interest primarily to the builder of knowledge-based help

systems; it should be noted that there is as yet no demonstration that the knowledge-based approach

is either practical or useful, despite the promises of its practitioners.

Of course, there is also a fair amount of literature detailing implementation considerations tbr user

interfaces other than help systems. While some of this may well be of use to the help system

designer, it will not be surveyed here.



I<I:I.I_\'ANT PI<I-VIOLi_ RI._Si_ARCII _

Part Two

The Method



56 T111!DI_IGN AND FNAI UATION O1: ON-I.INIi i11!I,1'SYSTI!MS



TI II! ACRONYM II1!!P SYSTI,M 57

Chapte r 5

The ACRONYM Help System

This chapter describes the prototype help system implemented for evaluation in this thesis.

Sections 5.1 and 5.2 discuss the motivation of its design and the choice of UNIX as the

implementation domain. Section 5.3 presents a top-level view of how the system works. This is

followed, in Section 5.4, by a more technical discussion of the system's implementation, which may

be safely skipped by the reader unconcerned with such details. The chapter concludes with a

discussion of the limitations of the prototype system in Section 5.5.

5.1. Motivation: Factors in the Design of ACRONYM

Research on help systems can proceed in any number of directions, as the survey in Chapter 3

demonstrates. At the present time, promising fields for research include the use of graphics in help

systems, natural language help systems, and "intelligent" help systems or tutoring systems which

apply real knowledge about the task domain to the generation of help.

This thesis, however, is not designed to address any of the ongoing research problems in those

areas. Rather, it is concerned with a more practical set of questions: how should techniques that are

already well-known and well-understood be used to create the best help system that is practical and

reasonably cost-effective at the present time? Obviously there are some grey areas: current

workstation technology makes windowing and simple icons easy, but programming these

workstations for sophisticated graphics, though possible, is still extremely complex and time-

consuming, and hence not cost-effective for many applications.

The concern here is to utilize known techniques to the maximum and to study their effects. The

importance of dais approach is amply demonstrated by the sorry state of help systems in the real

world today. It would appear that the few programmers who have seen fit to devote real effort to

building help systems have generally acted in ignorance of the good facets of help systems that have

gone before. The help system to be constructed for dais thesis, therefore, was specified to be one that



58 '1'I11!I)I-ISIGN AND I-VAI UATION Ol: ON-I tNli IIF.I.I' SYSTFMS

ato' good programmer should be able to completelx, in_plement in a reasonable amount of time and

that would run on ordinary hardware. 13 In this way, the system should serve as a model for future

implementations, or at least as a new minimum sumdard to which all filture help system designers

might be held accountable.

Given this limitation -- that the implementation of the help system should not itself address any

unsolved research issues -- certain types of help features are immediately ruled out. ttowever, the

vast bulk of the help spectrum discussed in Chapter 2 remains available as techniques for the

implementation of the prototype help system. In particular, all that are really ruled out are help

systems which use fancy graphical techniques, beyond simple windowing, intelligent help systems

and tutors, and natural language systems (although the latter was simulated with extremely

interesting results).

Other factors motivated the exclusion of a few other potentially useful help features. Since the

system was to be studied only in relatively short-tenn experinaents, it seemed useless to build into it

facilities for long-term monitoring of individuals and for tailoring its behavior to individual user

models and profiles.

Perhaps more importantly, the contents of the dat_base were dictated to a large extent by the

necessity for objective experimentation. Since the experimental methodology (to be described in

subsequent chapters) was designed before the help system was actually built, it was important to

ensure that I did not bias the help system's database in favor of those tasks that I knew would be a

part of the experimental task set. Therefore I obtained the contents of the database from the best and

most appropriate book I could find. M Although the information in that book was already well-

structured for inclusion in a network-based help database, it did omit some kinds of texts that might

be useful in a help system. In particular, it did not, for each command, include special sections on

level of expertise required, category of command (file handling, word processing, etc.), analogies or

13The definition of "ordinary" may be somewhat strained here: while sophisticated graphics are not presumed, the system
studied in the expcriments featured a 60-line terminal with a mouse, l loweveL a second version of the system ran on an
ordinar,' 24 line terminal without a mouse. Differences between the two versions, and obscr,,_ations reievant to future
implcmentors who are constrained to a smaller .screen,are recounted in Chapter 8.3.

14Texts for the experimental hclp system were derived in largc part frt_rn Mark Sobell's A l'ractical Guide to the UNIX
System, Copyright (c) 1984by Mark G. Sobcll, published by the l_njamin/Cummings Publishing Company. The cooperation
of the author and publisher is gratefully acknowledged.



TIII:. ACRON'YM l llil P SYSTIlM 59

metaphors 15,or customization. It also (lid not provide multil)le levels oi"deepening help for people

with differing expertise. Any of these might improve the system, and all of" them are perfectly

feasible; indeed, they are merely the data for the help mechanisms, and could be included with no

change m the mechanisms themselves.

5.2. The Choice of the Implementation Domain

As has been stated, the task domain chosen for the prototype help system and experiments was the

UNIX operating system. While UNIX's widespread use and notorious opacity for novices [80] might

make this choice seem the obvious one to many, a f_w words about its selection are in order.

The three key factors in choosing UNIX as the implementation domain were a large local user

community, an interface that was initially difficult to learn, and a software environment conducive to

the quick construction of the prototype system.

The requirement of a large user community, which was designed to facilitate experiments testing

the help system on expert users, effectively narrowed the choices available locally to four: UNIX,

TOPS-10, VMS, and TOPS-20. (Two other systems available locally that were rejected primarily

because of the size of their user community were the SPICE integrated programming workstation

environment and the UNIX-based Andrew system under deveh)pment at the Information

Technology Center at Carnegie-Mellon.)

Of these four systems, UNIX was the clear choice for both of the remaining two reasons. The

cryptic nature of the UNIX command interface is legendary, as its supportiveness for software

engineering tasks [65,64]. In addition, UNIX was chosen because of the availability of UNIX Emacs

[44, 9], a powerful editor which is programmable in a lisp-like language. By building the entire

system within Emacs, it was possible to completely avoid having to write any screen management or

process management code, which undoubtedly saved many weeks of implementation time.

15It should be noted, however, Lhat several authors have argued against using analogies or metaphors in computer

documentation. [10, 48]



60 Tlili I)I-SIGN AND IiVAI UATION OI:ON-I INI. I11:1P SYSTIMS

5.3. The Design of ACRONYM

ACRONYM 16is the prototype help system designed for use in this thesis. As stated earlier in this

chapter, it was intended not to break new ground in help system design but rather to consolidate and

integrate existing techniques. As it happens,'this consolidation and integration itself may be regarded

as ground-breaking: experienced computer users testing ACRONYM have routinely remarked on its

power and clarity of design.

ACRONYM represents help in a single database which can bc accessed via a number of

independent mechanisms. The system was designed to make it easy to turn various component

mechanisms on and off to facilitate testing. However, the version described here is the full version

with all t_acilitiesenabled.

5.3.1. The User Interface

When ACRONYM runs, it divides the screen into three windows. (This is the primary motivation

for using a larger-than-usual 60-line screen. Those versions of ACRONYM which use standard 24

inch screens end up with 7-line windows, a bit small for most people's taste.) The bottom window is

the command window, where the user types commands and the computer prints its responses. The

top window is the help text window, where the system displays the help texts that have been accessed

by one of the help mechanisms. The center window is a help menu window, listing rclcwmt topics on

which further help is available. Figure 5-1 shows the ACRONYM screen when it first starts running.

Appendix B shows a series of such screen pictures as it illustrates how ACRONYM looks in actual

use.

All of the windows are independently scrollable, using mechanisms to be described below.

ttowever, the database has been structured so that in most situations, scrolling is not necessary; the

size of the help text and the number of menu options is usually small enough to fit in the 19-line

windows provided.

Help is available via four basic mechanisms. The first mechanism is passive help. This is the only

computer-initiated help ACRONYM provides. Whenever the user types the SPACE key (the most

common separator between components of a UNIX command) or the RH'U RN key (the terminator

of UNIX commands), the system parses the partial command line and updates the help text and

16ACRON _tqVlis not an acronym.



TI1EAC'I_ONYM111!1,PSYS'I'I:M 61

Figure 5-1: What ACRON YM's Screen Looked l.ike

Welc()me to ACRONYM. If you dor_'t want to be here, press DE[ to exit.

r_ addition to normal typewriter-style keys, your compute!" has a pointing
device known as a "nlotlse." You can move this device arotlr}d, callsing the arrow
on your screen to move arotlnd and poifrt at differ'enl parts of the screen.

n this system., yoLJ can use the mouse to get help irl several ways.

o begin with, you will notice ti_at tlre higlllighted line _Jnderneath the text
you are now reading says "PRISS HERE to move for'ward." If you use the

mouse to point the alrow at the word "HFRE". an(J therl press ar_y button on
the mo,Jse, yell will find that the text in this window is scrolled forward --

that is, the begirming o+ the text will disappeal, i_rl(lfew text will appear
at tie end of the w_ndow, fry it and see.

if you can't seem tu get the window to scroll forward, tills probably means

that you are pointing the arrow a little too high, Note that it is the
arrow head, not its body. that should be pointing at the word "HERE",

iIrJ general, whenever this window ov the one below it. has more text than is

-- Hel l) texts -- PRESS HiRE to move forward.

** How to use the ACRONYM llelp system
** at: _xecute a Shell script at a specified time

** i)b: print notices from bulletin board(s)
** hiff: be notified if mail arrives and who it is from

** cat: display calendar
** calendar: reminder calendar

** cat: display a text file

** co: C compiler
"* coat: Print compressed files in uncompressed format

*" cd or chdir: Ci_ange to another working directory

chmod: Change the access mode of a file
*" ::hat: Comnn;nicate with (log in to) arlother machine on the Ethernet
** ok: check if new mail ilas arrived

** crop: Compare two files t_ see if they differ"
cmuttl_: Iransfer files to and fronl other machines Qn the Ethernet
col: fi_t.el reverse line feeds

*.* ,;omm: Com[,__te ¢wc fi los alJd F;inl matching a,d nor matchirrg l lnes
cL'mpact: compress ii les to save space

** cp: Copy file

cz: convert files to press forlaat and print them on the Dover

-- Hel l) menus -- PRESS HERE to move forward.
$

Press 'i" for corrtext-dependent help_ l)ft to e_,it. Press HERE for basic hv,lJ).



62 T111,iI)I;.SIGN ANI) I!VAI UATION O1;ON-I.INI,'. I11!iP SYSTI-MS

menu windows accordingly. Thus, if a user t3pes "rm" and then presses SPACE, the help text

window is updated with a short text describing the options and arguments for the rm command. 17

The menu window is updated m list such related help topics as "Examples of the rm command",

"Options for the nn command", "What is a file?", and "rmdir: Delete a directory". Note that some

of these menu items provide further details about the command in question, while some describe

concepts of global importance (files, directories, path names, and so on), and still others point to the

documentation on other, related commands.

The second method by which help can be obtained is also context-dependent; it is in fact just like

the first except that it is human-initiated instead of computer-initiated. By typing a question mark

("?") at any time, the user can cause the system to parse the current command line and update the

help in much the same manner as it does automatically when SPACE is typed. However, this

mechanism is available even if the automatic updating is turned off; and can be used in the middle of

a word to beneficial effect. For example, in UNIX a hyphen ("-") usually signals an option on a

command line. Therefore, if an ACRONYM user types, tbr example, "rm -" and then types a

question mark, ACRONYM will update its help window to contain a detailed description of the

options for the rm command. This technique is also used for file name completion. For example, if

the user types "'rm rex" and then types a question mark, the menu window will be updated to

include, as new menu choices, the list ofalt file names in the current directory starting with "rex".

The third method by which help may be obtained is key word requests. At any point, the user may

type the word "help" followed by a key word. ACRONYM will then look up the key word and

update the help and menu windows accordingly. For example, if the user types "help rm", the help

text will bc updated to the initial help for the rm command, with appropriate menu items. If the user

types "help file", the text will discuss what a file is while the menu will list commands and concepts

related to the notion of a "file". In the case of ambiguous requests, such as "help ill" which might

reasonably refer to "file", "filter", or "profile", ACRONYM will dynamically generate a help menu

that allows the user to choose between those ambiguous interpretations.

Finally, the fourth method by which help may be obtained is menu selection. As described above,

the menu window at all times contains a list of topics for further help. In the mouse-based version of

ACRONYM, users can simply point to one of these at any time and click any mouse key, and the

help will be updated to explain the topic selected. (In the non-mouse, small screen version of

ACRONYM, menu selection is done with function keys.)

17"lhc rm command on UNIX is used to delete a file or files.



1"111_ACRONYMllI_I,PSYS'I'I'M 63

When help is updated by a mechanisnl that is not context-sensitive -- that is, by key word or menu

help -- the new menu will include as its first item the option of returning to the previous help frame.

This makes it relatively easy for users to recover after an ineffective help request. An arbiu'ary

number of menu or key w'ord help requests can all be backtracked, but tile stack is reset every time

context-sensitive help is obtained. (This seemed to make sense when it was designed, but observation

of users suggests that resetting the stack causes unnecessary confusion, ttowever, the backtracking

feature was never used to backtrack long distances, so a better yet still efficient implementation might

simply allow backtracking of the last 20 help fl'ames, whatever they were.)

A few other features of the system are worth mentioning. Independently scrolled windows are

implemented as follows: when the help text or help menu window contain more text than can be

displayed, one or both of the phrases "Press HERE to scroll backward" and "Press HERE to scroll

forward" appear on the line that divides the window from the one below it. Users can scroll the

windows by simply pointing at the appropriate spot with the mouse. Scrolling is implemented with

function keys on the non-mouse version (e.g. "Press f13 to scroll backward"). Help with the

mechanics of the help system itself is also always available with a mouse selection; a spot at the

bottom of the screen sas_ "Press HERE for help with the ACRONYM Help System". This, too, is

done with a function key in the mouseless version. An error mess_ige is printed if the user tries to

select an inappropriate part of the screen with the mouse.

The use of ACRONYM is further illustrated by example in Appendix B. Reading that example

will probably give the reader who has never used ACRONYM a clearer picture of how the system

works. A brief videotape of ACRONYM in action is also available.

5.3.2. The ACRONYM Database

The most important thing about the ACRONYM database is that it is a database -- a database of

knowledge about help systems, rather than a set of texts for use in specific circumstances. It was not

designed to support a single help mechanism, but instead to structure the help data in such a way as

to facilitate retrieval via several different mechanisms. This kind of database a!h)ws the maintainers

to add new help mechanisms without having to write new texts.

ACRONYM's database is structured as a network in which the basic object is an indivisible chunk

of help text. These texts are linked to each other by pointers, which are used both for the

construction of menus and for the parsing of command lines. Pointers may be syntactic, in which

case they are used for parsing, semantic, in which case they are used for menu construction, or both.



64. TI IE DIiSIGN AN D I:N:\I,UATION OF ON-I INlg I!1!1.P SYS'H-MS

Purely semantic pointers can be specified forward or in reverse, to sitllplify fleshing out the database;

duplicate pointers are automatically eliminated. Each text has a short name, used in the database

implementation to specify pointers, and a long name, which is the one line of text displayed in

menus.

As stated before, the ACRONYM database comes primarily fi'om Sobell's excellent text on the

UNIX system [112]. It was necessary to supplement these texts with additional texts to describe those

commands which are not part of standard UNIX but are in common use at Carnegie-Mellon. (It was

considered essential that the depth and breadth of the ACRONYM database should be

approximately the same as the standard help system to which it was being compared.) These texts

were written in a format and level that resembled Sobell's texts as much as possible. It was also

necessary to supplement the Sobell texts with additional texts that explained concepts, such as "file"

and "directory", which were not available in the right format in the Sobell book. Finally, of course, it

was necessary to link these texts together with pointers; no such linking was provided by the Sobell

book. (Such links would not make much sense in the context of a textbook.)

5.4. The Implementation of ACRONYM

This section describes some of the details of ACRONYM's implementation. It can be skipped

without loss of continuity by the uninterested reader.

ACRONYM was implemented on a Digital Equipment Corporation VAX-11/750 running UNIX

and Emacs. The terminal used was a Xerox Alto personal computer running a terminal emulation

package (rchat) which simulated a 60 line intelligent terminal with a mouse. 18 Most of the code was

written in Mock Lisp, the Emacs extension language, but the most computation-intensive portions

were written as a C process communicating with Emacs via the CMU IPC [86]. This allowed the C

program to parse the command line asynchronously, so that there were no user-level delays for

parsing. (This also meant that occasionally the help update performed when the user pressed SPACE

was not completed until the user had typed several more characters.) The system ran with no

detectable response delays on the VAX when unloaded, and with a few seconds delay for context-

sensitive help when the VAX was heavily loaded. However, for the experiments the system ran at

high priority, and hence with very fast response.

18The terminal emulation package did not permit graphics or ,sophisticated control of the mouse. The mouse identified its
own location only by its character row/column position, rather than the much finer resolution of which the hardware was
capable.



IIIE ACRONYM IIEI P SYSTI'M 65

The details of the implementation of ACRONYM and its data structure were dictated ill large part

by the decision to build the system within Emacs. Emacs offers several advantages in such a system,

most importantly the built-in provision of sophisticated screen management, string handling, and

process management facilities. However, its facilities for file access are rudimentary: either it reads

in an entire file or nothing at all. Thus, the implementation either had to store the ACRONYM

database in one or a few large files whicla would be read by t'macs in their entirety and then taken

apart as needed, or it had to store the database in a very large number of small files, each containing

the help text for a single node in the help network. This latter approach was used, as it held out the

clear promise of faster performance in the Emacs environment. _9 A system operating independent of

Emacs could easily achieve the same performance without such a proliferation of files simply by

using pointers into files and random disk access.

Thus, ACRONYM stores almost everything as a separate file. What the documentation designer

creates for a help node is two files: the first file is the help text, displayed by ACRONYM in its help

text window, and stored in a file named by the node's unique name followed by the suffix ".help".

The second file, suffixed ".hcom" is a program specifying the way the help node is linked to other

nodes, written in a compiled language that could easily be improved on in future systems. The first

line of such a program is the "tag line" used to identify the node in help menus. The remaining lines

are each pairs of words specifying relations between nodes. The first word gives the link mechanism,

while the second word is the name of the node being linked to.

The link mechanism is simply "@link" to specify a semantic (menu-only) link from the current

node to the node named as the second word. The link mechanism "@key" is the opposite: it

specifies a menu link from the named node to the current node. (The word "key" is intended to

suggest the specification of a key word. For example, file .hcom file for "rm" includes "@key file" to

indicate that "file" is a key word for rm, so that people looking at the help for "file" should see a

menu item leading them to the "nn" command.) Other link mechanisms available are for syntactic

links -- links that are used in the parsing of command lines for context-sensitive help. 'Ilaese

mechanisms specify state transitions: if the parse is in a state corresponding to file current node, the

syntactic links specify how the parse can advance to another node. The simplest such mechanism is a

simple string, indicating that the transition can be made if the user types tile string verbatim. Thus,

for the top level (root) help node, the .hcom file includes the line "rm rm", indicating that if the user

19Emacs can't easily do random access to a file, and can hence extract pieces of a file only relatively slowly. Using

independent files allowed each window's contents to be pre-written into a single file, so that a simple read-file operation was
all that was ever needed, llence the database had thousands of files.



66 TIIILI)ESIGNANI)I_VAI.UATIONOI70N-I,INI"111.II,PSYSTF.MS

types "rm" tile parse can proceed to the hell) node "rm". Other syntactic link mechanisms include

"@_file",which is matched (and hence the parse proceeds) if tile user types any existing file name,

"@filewrite", which matches any potentM (writable or existing) file name, "(/!!directory", which

matches any directory name, and "([_!user", which matches any user name. An early version of

ACRONYM included a generalized regular expression parser for syntactic links, but this proved

almost completely useless and was disabled in order to increase performance. It was repl_ced with

"@opt", which matches anything starting with a hyphen ("-" starts most UNIX options), and

"@]any", which matches any single word, and is used as an escape mechanism in those few cases

where the full regular expression parsing would have been genuinely useful. (Such a mechanism

would probably be more useful for parsing help requests in a less rigid command language, but most

UNIX commands are easily and quickly described using the simpler mechanisms.) All syntactic links

are assumed to also be semantic links unless the name of the node being linked to is preceded with an

"@" sign. In such a case, the link is purely syntactic, and no listing will appear in the relevant menu.

A documentation designer modifying the ACRONYM database therefore has to modify only the

"'.help" files and the ".boom" files. Modifying the .help files is simply a matter of editing text, which

is of course what documentation.designers are paid for. Modifying the .hcom. files is clumsier; in a

system designed for real-world use, it would probably be worthwhile to in'vest some effort in the

creation of better support tools to replace the cumbersome language used in ACRONYM. In

particular, a useful tool would utilize a graphical display to create a map of the database, allowing the

database designer to create links by drawing arrows and to specify their syntactic and semantic

content by annotating the arrows.

When it runs, however, ACRONYM does not read the entire database in the format thus

desclibed; this takes too long. Rather, it reads in a compiled description of the database. Hence, a

compiler must be run each time the database is changed. This compiler reads in all of the .hcom files,

constructs an intermediate data representation, and stores this in a file that is actually read by

ACRONYM. The compiler also, after reading in all of file .hcom files, creates for each node a

".hmen" file. 1'his is the menu file that is inserted in the ACRONYM window. (ACRONYM does,

however, add menu items to these files on certain occasions -- the .hmen files are simply the basic

menus for each node.) Thus ACRONYM when running finds both its help texts and its menus in

prewritten files, and needs only to use the compiled database to figure out which files to use. "l]aisis

the primary reason why ACRONYM actually runs faster than the UNIX man command, which is a

much less sophisticated help system but has to mn everything through the nroff text processor before

printing it on the screen. (This is obviously a rather worthless comparison: almost anything is faster



"11IF.ACRONYM IIF.I.P SYS'II-M 67

than the man command. However, ACRONYM did actually run quite fast; a response time longer

than a second was extremely rare.)

The hmen files can only be safely created alter a//of the .hcom files have been read in, in order to

properly take account of reverse-specified links (links specitied using @key). Compilation would be

quicker and easier if no mechanism such as @key existed, so that each menu could be generated

directly from the associated .hcom file (indeed, this would make it easy to implement separate

compilation of each node, as opposed to ACRONYM's current all-or-nothing compilation.)

ttowever, this would make the documentation designer's problem harder -- he would have to edit

more files more often. Since thc implcmcntor of ACRONYM was also the documentation designer,

compilation spced was willingly sacrificed. Of course, with a good (graphical) interface for the

documentation designer, this problem would be moot.

When ACRONYM runs, therefore, it has to read only the compilcd representation of the database

structure; this information includes the names of the nodes, the extended names of the nodes (single

line descriptions for menus), and the pointer relationships. The format in which this information is

stored is not especially efficient. No real users ever had to wait for ACRONYM to start up, as the

system was already running when subjects showed up for experiments, so there was no great effort to

make this part of the system work fast. With its full database (about half a megabyte of text and

pointers) ACRONYM generally requires about a minute of real time to start up. Since the actual

help texts are not stored in the compiled database, ACRONYM doesn't read in any such texts until

they are genuinely needed.

ACRONYM was invoked from the UNIX shell by an alias tlaat started up Emacs and executed a

Mock Lisp "acronym" package. This program divided the screen into the appropriate windows,

started a shell proccss in the command window, and started a hidden process (using the Emacs

start-process mechanism) to run a C program also (confusingly) called acronym. This was the process

that actually read in the ACRONYM database. When the database had been read in, the C program

sent a message up to Emacs telling it to read in the root help and menu files, and the Emacs program

then printed an appropriate startup message.

Menu selection was accomplished with no communication at all with the underlying C program.

The menu files includcd (in the first 14 charactcrs, and hidden from the user by Emacs trickery) the

names of the files associated with each menu item. Thus the emacs code could look at the menu line

that was selected and determine the name of the associated node in the help database. It would then

rcad in the relevant ".hclp" and ".hmen" files.



68 T! lli I)I-SIGN AND I-VAI,UATION O1:ON-I ,INi! 111!IP SYSTI-MS

Context-dependent help was executed by having a Mock l.isp program copy the current command

line and send it to the C program. The C program would parse the line using its dauibase of

infi}nnation, and send back to Emacs (via the il'C) the name of the new help node. Emacs would

then update the help text and menu windows from the associated .help and .hmen files.

Key word help was accomplished similarly to context-dependent help; the C program would

disambiguate the key word if possible, using the thesaurus-like information in ACRONYM's

database, and send Emacs the name of the appropriate help node. All key words were implemented

simply as individual nodes in the ACRONYM database; the system simulated a thesaurus inasmuch

as a large number of synonyms fi)r each cencept were explicitly defined. A genuine thesaurus would

be both more complete and less painful tbr the docum_zntation designer.

In some cases of context-sensitive help, especially those involving file name completion, user name

completion, or something similar, the C program had to write out a new version of the .hmen file "on

the fly", to incorporate information about the current state of the world (available files, etc.). 3'his

was the only reason that the compiled database included the text lines (long names) for each help

node.

When key word help or menu-selected help was provided, the mock lisp program that updated the

display also inserted an appropriate menu selection item to allow the user to go back to the previous

help node. The stack of such items was hnplemented as an Emacs buffer, so that the C program was

never involved in this procedure.

In summary, the implementation of ACRONYM was quick and dirty. However, it is worth noting

that these tricks sufficed to allow all of the mechanisms of ACRONYM to be built in about three

weeks, from scratch. It was only the availability of the sophisticated support mechanisms of UNIX

Emacs that made this possible, and hence that made it possible to include both the construction of

the system and its experimental evaluation in a single thesis.

Obviously a real-world system, not embedded in Emacs, concerned with startup efficiency and with

the interface to the documentation designer, and with some customization options to allow at least

minimal user tailoring of the help system's behavior, would take considerably longer to build.

However, it still seems reasonable to expect that such a system could be built by experienced

programmers in not much more than one man-year. 2° Compared to the total cost of building a major

20This is the cost of building the mechanism, not of fleshing oul the database, ttowever, fleshing out the database is likely
to take only slightly longer than writing convenlional documentation for the .samesystem.



11 IE ACRONYM IlI!I,P SYSI'i M 69

software system, this seems quite reas_mable, especially in the light of the frustration with which users

have traditionally viewed their help systems.

Finally, for the masochistic reader, some annotated examples of the ACRONYM database are

provided in Appendix C, which explain how the examples in Appendix B actually work.

5.5. Limitations of the ACRONYM Help System

Aside from the corners that were cut in its implementation, ACRONYM differs in a number of

ways from the optimal system that could be built with the same basic approach.

Some of these are dictated by hardware and by the terminal emulation software used:

ACRONYM would be obviously improved with support for highlighting and multiple fonts, careful

use of graphics and animation, a better mouse mechanism (the rchat program's support for the mouse

can only charitably be described as merely clumsy), and a higher quality display (the particular Xerox

Alto used in the experiments probably had an excellent display about ten years before it was used in

these experiments, but has not aged well).

Other ways in which ACRONYM fails to meet its potential are dictated by the methodological

decision to use only externally-generated texts as much as possible: ACRONYM would be improved

if it included tutorials structured for inclusion in its menu network, multiple levels of explanation,

special information for experts, customization information, and references to external sources of help.

Finally, some of ACRONYM's other failings can only be attributed to implementation

inadequacies, many of which only became obvious after the system had been in use for some time in

the experiments: A future system like ACRONYM might include a provision for cycling through

menu choices when successive requests for context-dependent help are made. (ACRONYM simply

gave users the same thing, over and over again.) It might be very useful to treat any erroneous

command as a key word help request, so that if a user types "directory" instead of "ls"'21(a 'very

common thing for a naive user to do), ACRONYM would supply help about "directory" that might

quickly lead the user to "ls". File name completion could be more thoroughly integrated into the

menu selection process, so that one could avoid typing a complete file name by selecting a menu

item. The top-level menu, currently much too large, could be replaced with a series of submenus

categorizing commands by major topics, as recommended by several authors [49, 81]. A real-world

21ls is the UNIX command for listing the files in some directory.



70 TIlli DI(,_,IGN ANI)F.VAI.UATIONO1:ON-I.iNF.111,]PSYSIEMS

ACRON YM should probably include extensive opportunities for customization, and some provisions

for choosing among alternative help presentations on the basis of the user's history of use of the

system. All of the above are practical, fairly simple improvements that could be made to

ACRONYM itself, with no undue programming effort.

Finally, an interesting research project might be to tie a natural language help system into the

ACRONYM database. Although the experiments reported in Section 7.1 cast doubt on the general

utility of natural language help systems, they may yet prove very useful to total novices who find even

the mechanics of a help system such as ACRONYM difficult and intimidating.



TIlt_F,XI>I!RIMI']NTAI,MF:I'ilOI) 71

Chapter 6
The Experimental Method

Evaluating the user interface of a computer system is difficult. It has been done rarely enough that

no general theory exists, and only a few good exalnples such as Roberts' editor evaluation

methodology [93, 94, 95, 8] are available to use as models. In addition, the wide variety of user

interfaces that can be evaluated carries with it widely varying circumstances and problems for the

evaluator, so that experimental methods do not transfer simply from one domain to another. In this

chapter, I will describe not only the method used for the experiments in dais thesis, but also the

factors which shaped the design of the experiments, in the hope that an example of how such

experiments are designed may prove useful to future designers of human factors experiments on

software.

6.1. Factors Affecting the Experimental Design

A number of special problems influenced the design of the evaluation experiments. The most

important of these factors were the need for a uniform implementation domain, the selection of

experimental tasks, the stimulation of expert usage, variation among subjects, and the selection of

interfaces to be tested.

6.1.1. Uniformity of Implementation Domain

Section 5.2 explained some of the reasons why UNIX was chosen as the implementation domain

for the prototype help system. It did not mention, however, why it was considered necessary that all

help systems to be tested operate in the same domain. This was necessary in order to prevent

variability in the inherent difficulty of the task domain from confounding effects of the usefulness of

the help system. If interface A with help system B is faster than interface C with help system 1), it is

simply not clear if the effect is due to a better help system or a better fundamental interface design. It

is fundamental to design scientific experiments to minimize all variations except the one(s) being

studied, so it is clearly preferable to study help systems against the backdrop of a single task domain.



72 TIII_ I)I:SIGN ANl)I!VAI _UAIION O!: (,)N-I,INI! 11I.iP SYSTI,'MS

6.1.2. Task Selection and Stimulation of Expert Usage

ltelp systems are, fundamentally, only used when subjects dorl't know how to execute the task they

are trying to perform. This poses an interesting problem for experiments on experts: how can

experts reliably be made to use a help system? Obviously, the selection of tasks for experts must be

very carefully made in order to ensure that the tasks are sufficiently challenging or obscure that most

of them will force most experts to seek some source of information other than their own memories.

For experiments on novices, of course, the problem is rather different; virtually any task will force

a novice to seek help, but many tasks will prove hopeless even with the most sophisticated help. For

that reason, tasks given to novices in the hope of observing their performance with a help system

must be sufficiently simple to give them a reasonable chance of success even with the worst help

system to be studied.

The successful selection of such tasks seems to require an iterative process. For these experiments,

the selection began with a questionnaire that was given to about a dozen UNIX experts, asking two

simple questions: First, what are the most basic commands that every novice learning UNIX needs

to know? Second, what tasks can you imagine that you might have to perform on UNIX that would

make you consult the help system?

From the answers to these questions, a first set of tasks for novices and a first set of tasks for experts

were derived. These were each about thirty tasks, representing the thirty most common answers to

each of the two questions. A pilot experiment was run, studying only two help conditions (the

standard UNIX help system and a human tutor) using these tasks.

In the pilot experiments, a few of the tasks were obviously unsuccessful, either because they were

too difficult for nearly all of the subjects or, for some of the expert tasks, because they were too

simple and forced virtually no one to ask for help. The task lists were each pared down to 22 tasks for

the final experiments.

By this process, an expert task list was obtained that was sufficiently challenging that the experts

needed some kind of help to complete 87.5% of the tasks in the final experiments. A novice task list

was obtained that contained tasks of sufficient simplicity that 95.2% of the novice tasks were

completed successfuly within the time allotted.

However, this process is not without its flaws. Although the expert tasks seem fairly representative



TI i1.iI(XPi _RIM I!NTAI, Mi:,TiIOD 73

of how experts actually use the help system, they do consist in substantial part of tasks that no one

would very often want to do: most of the interesting tasks are already known by too many experts.

This seems a fifirly insurmountable problem: the only way you can get experts m use a help system

reliably is to ask them to do something they wouldn't ordinarily have much interest in doing.

Another flaw with the process by which the tasks were selected is that it could not take into account

very recent research on UNIX command usage [27,49]. The 1)raper study suggested that expertise in

a domain such as UNIX is chimerical in nature: Draper would undoubtedly have predicted correctly

that the only major difference between the experts and novices would be that the experts are already

proficient with the standard help system and hence perform better with it. The in fluence of Draper's

study might have been to focus the research more exclusively on novices at an earlier stage. In the

study by Hanson, et al., real communities of users were observed and a list of the most important

UNIX commands was obtained. Had these results been available when the task lists were selected,

they would probably have influenced the selection of tasks for novices, as their data is surely more

reliable than the survey of experts described above. However, as it turns out, given the restrictions

imposed on the tasks for the current experiments (the tasks were individual commands, not involLving

editors or programming languages), the Hanson study only suggested three additional commands that

possibly should have been included it" the tasks for these experiments.

A complete summary of the expert and novice task sets is included in Table 6-1, along with the

command(s) that were acceptable as solutions for each task. The exact texts of the task descriptions

presented to the subjects appears as part of the experimental materials in Appendix A.

6.1.3. Subject Va riation

A major focus of concern throughout these studies was variation in the previous experience and

general computer aptitude of the subjects. Variation among subjects is a well-known problem in

human factors experimentation, and has in fact proved very costly in many studies. In Roberts'

pioneering studies of"editors [93, 94, 95], this variation was sufficiently wide that the bulk of the

editors were not significantly distinguishable for most of the tests. (This, remember, was in a

successful experiment on human factors in software!) In the hope of obtaining more significant

results, great attention was paid u) the problem of subject variation, with modest success.

For the pilot experiments, five categories of expertise were defined and considered. Based on a

preliminary questionnaire, included in the experimental materials in Appendix A, subjects were

classified in one of the following categories:



74 TIIF, I)I:,SIGN AND F.VA1UATION Oi ;'ON-I,INI" t1111PSYSTI!MS

Table 6-1: Summary of Tasks in file Experiments

Order Inten-nediate task (solution) Expert Task (solutiopO

T1 Time of day (date, uptime, whenis) t'rint on dover specilying font (cz -f)
I"2 Change password (passwd) Sort in reverse order (sort -r)
T3 list files (ls) l_ist files by time modified (Is -t)
T4 View file 6_.at,pr, more) Change protection as specified (chmod o-c chmod640)
T5 Copy file (cp) Delete file reversibly (del)
T6 Rename file Onv) I,ist deleted files (lsd)
T7 Print file on dover (ez) Restore deleted file (undel)
'F8 Delete file reversibly (del) i:ind i-number (Is-i)
T9 I_istdeleted files (Isd) Set setuid bit (chmod u+ s, chmod 4xxx)
T10 Restore deleted file (undel) Send to user togged in twice (send -all, send user tO'xa)
T11 Direct message to another user (send write) List processes tbr all users (ps a)
Ti2 Print calendar (eaO Print file on dover with header (ez -h " ")
T 1 View file backwards (re_9 Sort. ignofin_ capitalization (_ort-39,. 3

114 Print working directory (pwd) Cancel all pending mail requests (mailq -retain)
T15 Make new directory (mkdir) View only the printable strings in a binary file (strings)
T16 Change directory. (cd chdir) I_ecute remote command (cmuftp rg -= "/date")
T17 Move file (my) Undclete old version of file (undel-g)
T18 Delete empty directory (rmdir, rm -r) Retrieve file from Onyx server

(ecp -u guest guest "[onyx]gMtoDocs)chat.tty" chat.try)

"F19 Delete full directory (rm -r) Send to user on remote machine
(rsend user_host, send user_13msO

q20 I.ist current users (u, users,finger, who, w) List processes on terminal ttypa (ps tpa)
"I"211 Find string in file (grep) l.ist process witiano temfinal (ps tp?)
T22 Send mail (mail) List total space occ_q3ied by deleted files (isd-t)

1. Total novices -- people who had never before used a computer.

2. UNIX novices -- people who had a certain minimum of computer experience, but had
never used UNIX. For these experiments, to guarantee similarity of backgrounds in this
category, all of the subjects used could perform all or most of the questionnaire tasks on
the TOPS-20 operating systems, but none or nearly none of them on UN IX.

3. UNIX experts -- people who could perform all or nearly all of the questionnaire tasks on
UNIX.

4. UNIX wizards -- people who were not only UNIX experts, but who also were so
knowledgeable about UNIX in general that they knew virtually everything about the
system. Obviously such knowledge could not be detected by the questionnaire, but
became obvious during the experiments. UNIX wizards generally did not have much use
for the help systems during the experiments, and were hence their data were disqualified
after they were finished. Several such disqualifications were necessary in the pilot study,
but none were necessary in thc final experiments reported here.

5. Mixed expertise -- people who did not fit in any of the above categories. Generally, these

were people who could perform some but not all of the tasks on the questionnaire, or who
had never used either UNIX or TOPS-20.



T! I1(IiXPi{RIMI!NiAI. MI('II I01) 75

in the pilot study, subjects fiom the first three categories were studied. However, the first category,

total novices, proved intractable for the purposes of the experiments. Many subjects in this category

were totally unable to perform even the simplest of tasks; one of them actually spent half an hour

trying to understand the simple software fi)r the typing test that preceded the real experimental tasks.

More important, nearly all of the subjects had severe difficulty in using the baseline help system, the

standard UN IX help system. Since the subjects simply could not get anything donc with the standard

help system, the cntirc methodology could not have workcd well for them.

In the final experiments, which studied UNIX novices and UNIX experts, thc results were

discouraging in terms of these cxpertisc classifications. In particular, the experts behaved in varied

and unexpcctcd ways, often bclying their classification as "experts". These results are discussed in

Section 7.4.

The problem of assessing subject expertise before the experiment is a difficult one, and one that

simply was not solved by the "classification-by-questionnaire" method used in these experiments.

The questionnaire was useful in that it did guarantee that the subjects had similar backgrounds, but it

did not succeed in clearly differentiating between groups of users with similar pcrtbrmance abilities.

ltowever, another aspect of the methodology proved very useful in reducing the effect of subject

variation, given that such variation could not be avoided. Each subject in the experiments used two

help systems, the standard CMU UNIX help system and one of the other help systems studied. (The

exact experimental method is described in Section 6.3.) The performance of the individual on the

standard system, compared to the large pool of data accumulated on that system, provided a rough

measure of the user's basic competence against which to judge his performance on the non-standard

system. (The actual technique used for most of the analysis was regression, as described in Section

7.1.) The net effect was that the primary measure of interest was not a subject's raw performance

time with a given help system, but rather the difference between his performance on that help system

and his performance on the standard "baseline" help system.

One negative consequence of the decision to use UNIX novices with TOPS-20 expertise is the

possibility that these subjects were, to some extent, biased in favor of the context-sensitive component

of the ACRONYM help system. However, ACRONYM is to TOPS-20"s help what the modern jet is

to the first airplanes, and early aviation pioneers would not like modern jets merely because of their

prior prejudice in favor of being airborne. Nonetheless, the charge is serious enough to be guarded

against in future studies of this kind. Fortunately, in dais regard, the experimental results certainly

give no indication that the deck was in any way stacked in ACRONYM's favor.



76 'll I1!I)I!SIGNANDI!VAI.UATIONOl' ON-IINI_1Ii,,IPSYSTEMS

6.1.4. Selection of Help Interfaces

Another major problem in the experimental design was simply to choose the help systems that

would be evaluated. '['his was difficuh primarily because there were so many alternatives, and it was

unclear which comparisons would yield the most significant differences. In the end. a two-stage

approach was used.

First, the most basic unanswered questions were selected: Which is more important, help

mechanisms or text quality? Can on-line help be implemented with no paper manual without

adversely affecting its usefulness? How does the performance of on-line help systems compare to

human tutoring? Appropriate help interfaces (as described in Section 6.3.4) were selected to try to

answer these questions in particular. The results of these studies were analyzed before deciding what

othcr help conditions to study in the last half of the experiment. This turned out to be an extremely

useful approach because the results were so unexpected. Since it turned out (see Section 7.1) that text

quality was so much more important than interface mechanisms, it became obvious that it was

pointless to use the methodology to investigate small variations in help mechanisms. Had the

complete selection of help interfaces to be studied been made without these preliminary results, it is

likely that the experiments would have been twice as time-consuming without producing any more

sign ificant results.

6.2. General Evaluation Criteria for Help Systems

There are a number of measurable quantities that correspond to common intuitions about what

constitutes a "good" help system. It is helpful to consider these general notions first, and then to try

to translate them into the design of specific experiments.

One key question about any help system is simply, "How often does it tell you what you need to

kno,?" That is, what fraction of the time will the system ultimately give a user the information he

seeks? This will be referred to as the hit ratio.

Of special interest is the amount of time it takes to learn a given task using a particular help system.

This time will be referred to as the acquisition time for task t, as measurements for different help

systems are fairly comparable only when the task is the same for each.

Finally, there is also the question of user satisfaction. That is, it is not known whether or not the

system that is most efficient is always most preferred by inibrmed users, in fact, informal reports



Fill".I:Xlq_I(IMFNTAIMI'?VIIOD 77

from tile working world often seem to indicate that _lis is not the case, that workers often prefer

interfaces that require slightly more time and work but are somehow more pleasant to use. ObJective

measurements of l.hescpreferences are possible through monitoring of the actual use of help systems

when several alternatives are available, though it must be ensured that the users are fully aware of"all

the available alternatives. These measurements, however, would require long-term monitoring of a

real-world system and its users, and are therefore beyond the scope of this thesis.

6.3. The Experimental Design

The considerations described above helped to shape the final experimental design, which will now

at last be described.

Two parallel experiments were conducted for the two different e)/pertise categories being studied,

UNIX experts and UNIX novices with TOPS-20 experience. The two experiments were nearly

identical in structure, differing only in the expertise of the subjects and. accordingly, the specific tasks

to be presented to them. They are best conceived as two separate experiments, rather than as a single

experiment in which expertise level is the second independent variable, because the differences in

tasks for the different groups preclude direct comparison of performance times. However, a section

of the task domain d_es overlap, so that between-experiment comparisons can be made for that

portion of the data. (The overlapping portion consists of learning to use a set of simple UNIX

utilities written by the experimenter and not commonly used by UNIX experts. This data is

discussed in Section 7.4.)

6.3.1. Overall Design

Two experiments were conducted, each following the same general pattern. In each experiment, a

group of subjects with similar backgrounds and experience in using computers were given a set of

tasks to perform on UNIX. The tasks were selected so that each group of subjects were executing

tasks they had never done before, and thus needed some source of information about how to

accomplish the tasks. The independent variable in each experiment was the method by which this

information was obtained. Each subject used the standard CMU UNIX help system during half the

experimenk and used one of the other help methods during the other half.22 These were balanced so

22Theuseofa baselineconditionwasdesignedto reducetheeffectsof,subjectvariauon,a.sdescribedearlierin thischapter.
Themandard(man/key)helpsystemwastheobviouschoiceforthebaseline:It istheonlycommonh'availableon-linehelp
wstemforthetaskdomain,andthusprovidesa practical baseformcasunnganyimprovementsina practical_nsc.whatts
reallyinterestingtoknowaboutUNIX'shelpis,"1lowcanmanandkeybeunprovedon?"



78 T111!! )I!SIGN AN 1) I,',_AI.UATION OI: ON-I ,INI_ i ilil I' SYS I'I!MS

that an equal number of people tised each help system for each kalf of tile experiment. l'he primary

dependent variable measured was the time it took to successfi_lyexectite each task. 'l'he experiments

were videotaped, and times were computed from the time stanip on the videotape.

In order to limit the time of the experiment and to insure that no subject got bogged down with a

single iask early in the experiment, a cap often minutes was placed on task execution time. The tasks

were small enough that this was enough time for nearly all subjects on nearly all of the tasks.23 When

a subject failed to complete a task in ten minutes, the experimenter showed him the right solution

(the right way to get the task done) and then allowed him to go on to the next task.

6.3.2. Experimental Setting

The experiment took place in the User Studies l_aboratory of the Carnegie-Mellon University

Computer Science l)epartment. Tke subject sat at a Xerox Alto personal computer emulating a

60-line video terminal with a mouse, using the rchat program. With the exception of those subjects

who were using a human tutor as their help system (see below), the subjects were alone in the room,

with the experimenter monitoring them on a video screen in the next room. 'l'he video cameras were

arranged to show a partial view of the subject, the experimental materials, and the subject's computer

screen, in addition to the time stamp on the video tape. (The video tape included a time stamp in

milliseconds, although the length of a video frame, about 17 milliseconds, defined the limit to the

precision of the measurements.)

6.3.3. Pretest and Typing Test

Prior to the experiments, a pretest was used to determine the expertise level of the subjects. F_ch

subject was classified in one of five ways: UNIX wizards, UNIX experts, UNIX novices who were

TOPS-20 experts, total novices, and those of mixed expertise. These classifications were discussed in

Section 6.1.3. Only the UNIX experts and UNIX novices who are TOPS-20 experts were studied in

these experiments.

231n the pilot experiment, the cap was set at fifteen minutes, ttowever, that experiment made it clear that this cap was
unnecessaril) high. Ten subjects were studied when the cap was fifteen minutes, and there was not a single inst_mce where a
subject completed a task in more than ten but less than fifteen minules. In general, the final fix;eminutes were simply a time of
extreme fiustralion for subjects who had gotten hopelessly stuck.



TIlliF.XPI_RIMI'_NTAI,MI:_FIIOI) 79

lt'the subject fit into one of those two expertise categories, the next step 24was an explanation of'the

experiment and a typing test. The typing test was included in case variation in typing speed turned

out to contribute substantially to individual variation in task peril)finance. It did not, and I would

recommend to anyone who uses this methodology ill the Future that they simply omit tile typing test

to save themselves and their subjects a little time.

6.3.4. The Help Systems

As stated before, the independent variable was the help system, l'_achsubject was presented with a

written description of the use of the available help facilities, and was encouraged m practice tising

these facilities before the experimental tasks actually began. Each subject used the standard CMU

UNIX help system as a "baseline" condition during half the experiment, and one of the other help

conditions being studied during the other half. All of the help conditions studied will be described

below, along with a list of other conditions that were considered for study but rejected for various

reasons. The help systems actually studied are summarized in Table 6-2.

It should be noted that the assignment of"subjects to help conditions was random, except that the

final help condition (H4) was studied later than the other three. Thus, the early subjects were

randomly assigned to any c_mdition except that one, and the last subjects were assigned to H4.

Table 6-2: Help Systems Studied in the Experiments

(details in Section 6.3.4)

Help System Description

H0 Standard CMU UNIX help system (man/key)
HI Hybrid system: man/key with texts from ACRONYM
H2 Fully implemented prototype system (ACRONYM)
H3 Ever-present l'mman tutor
H4 Simulated natural language help system.

24Actually, the pretest was often administered prior to the date of the experiment, via campus, electronic, or US mail. Thus
the "'next step" d_sscfibedhere was actually the first step m the experimental setting for most of the subjects.



80 T11I!I)F,S1GN AN]) I'VAI UA'IION O1: ON-! INE l li!l P SYSiTMS

6.3.4.1. The "Baseline" flelp System: man and key

The "baseline" help system, which each subject used for either the first or second half of the

experiment, is the standard help system used on the CMU UNIX systems. This system consists of

two commands, man and key. The man command is used to print file complete UN1X manual entry

for a given command. The key command can be used to find out about unknown commands; users

type "key file", and the system prints a single descriptive line for each rnanual entry that it finds for

the key word "file".

This system embodies the key word help paradigm discqssed in Chapter 2, but it does so less than

ideally. First, the texts are of extraordinarily poor quality, by ah-nost any standard. Second, the key

word lookup is done in a very stupid manner: a key word matches a manual entry only if the word is

exactly a substring of the first line of that manual entry. Third, the man command, for printing out

manual entries, is very slow because it runs the entire manual entry through the nroff text processing

utility before printing it out.

Subjects using the baseline system (H0) were also supplied with a physical copy of the UNIX

manual, so that they did not actually have to sit still and wait for the man command to perform. They

were also supplied with a booklet called "UNIX tbr lleginners", which is generally supplied as part of

d_e standard UNIX documentation for new users. Finally, they were supplied with a short

instruction sheet explaining the use of the help system and manual, which is reproduced in the

experimental materials in Appendix A.

6.3.4.2. The Hybrid System

The second help condition studied, condition H 1, was a hybrid system that consisted of the same

mechanisms used in the standard system (H0), but with better texts (derived from the ACRONYM

help system described in Chapter 5, and hence derived in large part from Sobell's book [112]). "['he

mechanisms were the same as the standard system at the user level, but performed better -- the man

command was faster, and the key command, though somewhat slower, did a much more thorough

search for key words. "['hishybrid system is thus basically just H0 with better texts, but is probably

better thought of as the standard system done right. Users of the hybrid system received exactly the

same instruction sheet and supplementary materials that were given with the baseline system. Of

course, they recieved a paper copy of the manual which contained the improved, non-standard texts.



Till:. I!XI_I_RIMI'_NI'Ai_MI_'I'IIO1) 81

6.3.4.3.The ACRONYM ltelp System

Help condition H2 was the multi-featured prototype help system, ACRONYM, described in

Chapter 5. t,tsers of ACRONYM in these experiments were given a short set of instructions in its

use, which is included in the experimental materials in Appendix A.

6.3.4.4. The Human Tutor

Help condition I-I3 was a human tutor. Subjects with this help condition were allowed to ask any

question of the tutor, but were not allowed to rely on the tutor's prior knowledge of what the problem

was. Hence, all they had to do was to state the problem clearly in order to have the solution

explained to them. Subjects using human tutors were given a short page of instructions, which are

included in Appendix A.

6.3.4.5. Simulated Natural Language Help

The final help condition studied, condition H4, was a simulated natural language help system.

Subjects with this help condition were allowed to ask any question in natural language typed on their

keyboard; the responses were determined by the experimenter in the next room, whose participation

was not known to the subjects and came as a surprise to all of them when the deception was revealed

after the experiment. Special support software allowed the experimenter to react quickly to each help

request by sending the user a smallportion of the ACRONYM database; thus the experimenter acted

as an English-to-ACRONYM translator. The instructions given to subjects with this help condition

are included in Appendix A.

6.3.5. Tasks

There were 22 tasks for novices and 22 for experts, divided evenly into two comparable sets. At the

midpoint of the experiment, the subject were shown a different way of getting help, and were

required to use that second method during the second half of the experiment. The task order was

fixed throughout the experiment; the nature of the tasks themselves flnposed at least a partial

ordering, making it difficult to vary the task order in any reasonable way. A complete summary of

the tasks for the experiments is given in 'Fable 6-1, on page 74.



82 TIII:.i)F.SIGNANi) I'VAIAJA'IIONO1:ON-I,INI_III!I.PSYS'IFMS

6.3.6. Posttest

The final part of file experiment was a posttest, in which subjects were asked to provide on paper

some evidence of retention of what they had learned. A questionnaire asked each subject simply to

provide the command used to execute certain tasks. This test measured the extent to which the

information learned was immediately di_arded. It was included to test the hypothesis that material

which is learned more quickly is also more readily forgotten.



TIll!I;.XI>I!RI\,II(NIAIMF:IIIOD 83

Part Three

The Results



84 l'IIl:. I)ESIGN ANI) FVAI_UATION O1:ON-I_INI! III,,I i' SYSTEMS



RI:SIJI.'IS01:TllliI'.XI'I:.RIMI;NTS 85

Chapter 7
Results of the Experiments

7.1. Basic Comparison of the Help Systems

The basic purpose of the experiments was tocompare the ease of learning to accomplish new t_asks

using a number of different help systems. Those help systems were described in Section 6.3.4, and

are summarized for convenience in Table 6-2 on page 79. In this section, I will describe the results of

the experiments.

The experiments yielded a complex set of multivariate data. It proved necessary to analyze the data

in several different ways in order to provide a complete picture. In this section, the results will be

broadly summarized_ with a more detailed analysis following in subsequent sections.

In each of the sections that follow, the results of the experiments will be presented first for the

novice experiments, and then for the expert experiments. The differences between these two sets of

results will be discussed in Section 7.4.

7.1.1. The Basic Novice Results

Every one of the four help systems that were compared to the standard CMU UNIX help system

yielded a significant improvement over that system, confirming the widespread impression that the

standard UNIX help system is very poor. This is not terribly surprising; UNIX was chosen as the

implementation domain in large part because its help system seemed to offer so much room for

improvement.

Of greater interest is the relative degree of improvement each of the four systems offered. Also not

surprisingly, the best system was the human tutor, which yielded significantly better results than the

other three non-standard systems. Those systems were statistically indistinguishable. Perhaps most

interesting, the difference between the standard UNIX system and the other systems was about the •

same as the difference between those systems and the human tutor. Thus, although none of the



_6 TI Ii,I I)I_SI(;N ANI) i(VAI L.',AIION O1:ON-i INI! 111,IIPSYSIi!MS

experin)ental systems perf()rmed as well as a human tutor, they did make up tbr about halt' of the

dift_rence between the standard UN IX help system and a human ttltor 011the tasks studied.

These highest-level results fi)r novices are summarized in Table 7-1. 'l'his table's first column

presents the average time per task for each of the five help systems. No data regarding variation due

to subjects and tasks are figured into that column, which accounts for the extremely high levels of

variance. The second column presents "normalized" averages for the same data. The normalization

was done by the following procedure: First, a weighting factor was computed for each subject based

on his performance using the baseline help system (H0). The average total time it took all subjects

who used that help system to complete those eleven tasks was divided by the time it took a particular

subject to complete those tasks to obtain the weighting factor for that subject. All of the subject's

scores for both help systems that he used were then multiplied by this weighting factor. That is, for

each subject Si, the weighting factor wiwas computed by the formula:
11

j=l
W.-"

lI

# Tij
j=l

where Aj is the average time it took subjects using H0 to execute task j, and Tid is the actual time it

took subject Si to execute task j. Note also that j actually sometimes goes from 1 to 11, and sometimes

goes from 12 to 22, dependening on whether the subject used H0 in the first or second half of the

experiment: the limits on the summation in the numerator follow those in the denominator in this

regard. 25

After each subject's scores were normalized by this procedure, overall averages were computed.

The normalized averages thus compensate in large part for variation among subjects, and hence
o

correspond more closely to the findings of the regression analysis to be reported in Section 7.2.

However, they still have very high variances due to the variation among tasks. (Task execution times

ranged from under ten seconds to ten minutes.) This variation is sufficiently large to preclude any

significant results. Thus Table 7-1 does not present the data in the form in which significant results

were obtained, but merely summarizes the overall trends; the regression analysis, to be explained

below, yields the significance asserted to exist in the results.

25It would be more correct to say that the summations go from k(1,i) to k(12,i) in this regard, where k(x,y) is defined to be

x for those Si who used tt 0 in the first half of the experiment, and x+ 11 for those who used it in the second half. However,
this seemed overly formal and even harder to read.



RliSl.ll ,TS O1:"1!11!1.:.XIq!RIMI{NIS 87

Table %1: Summary of Novice Experiments

(Significantly different systems are separated by a blank line.
Significance is derived not from these measures but from regression.)

Code Description Average time Normalized time
per task (SI)) per task (Sl))

H0 Standard (man/key) 167.0 (173.8) 167.0 (161.7)

H4 Simulated Natural l,anguage 101.4(131.5) 123.0 (150.2)
H1 Hybrid (man/key, ACRONYM texts) 136.9 (129.0) 115.4 (105.5)
H2 Full ACRONYM 116.7(122.2) 103.0 (104.8)

H3 Human Tutor 45.6 (23.8) 60.1 (27.8)

7.1.2. The Basic Expert Results

The expert experiments are summarized in Table 7-2, in the same format as Table 7-1. By chance,

the average time for experts using the standard help system was almost exactly the same as the

average for novices using the standard help system, despite the fact that the task sets were almost

entirely different. Aside from the fact that experts were not studied using the simulated natural

language help system, there are two obvious differences between the novice and expert results. First,

the ACRONYM system did not perform nearly as well for the experts. Second, human tutors were

not nearly as useful for the experts. ACRONYM was not significantly distinguishable from the

baseline system, while a human tutor was not significantly distinguishable from the hybrid system.

The meaning of these somewhat surprising results is discussed in Section 7.4.

"Fable7-2: Summary of Expert Experiments

(Significantly different systems are separated by a blank line.
Significance is derived not from these measures but from regression.)

Code Description Average Time Normalized time
per task (SD) per task (SD)

H0 Standard (man/key) 168.7 (181.3) 168.7 (180.1)
H2 Full ACRONYM 142.8 (120.1) 138.7 (124.4)

H 1 Hybrid (man/key, ACRONYM texts) 135.8 (156.5) 116.4 (134.3)
H 3 Human Tutor 79.4 (61.2) 103.2 (80.4)



88 TIll! I)i!SIGN ANI) I!VAi UAT1ON O!: ON-lANE Ill.'IP SYSTI!MS

7.2. Regression Analysis

The primary test for significant differences between the help systems was regression analysis, using

the analysis program MINI'I'AB I104]. The data were treated as a set of observations of four values.

Each observation included the task, the subject, the help system, and the log of the time to complete

the task. The first three were converted to indicator variables -- Boolean variables which indicated

whether or not a given discrete value of the primarily value was observed. Thus, since there were 22

tasks, there were 22 indicator variables for the tasks. For each observation, exactly one of these 22

variables was 1 while the rest wcrc 0. Similarly, there were 5 indicator variables for help systems, and

20 indicator variables for subjects. Regression analysis was then used to obtain a regression equation

which indicated the effect of each of the indicator variables on the dependent variable, the time it

took to complete the task.

The regression analysis yielded significant differences due to help system variation, as reported in

the previous section. Not surprisingly, significant differences were also found due to task variation

and subject variation. These results will be discussed in Sections 7.5 and 7.6. Table 7-3 summarizes

the results of the regression analysis of the data from novice users. The constant in the equation, 4.29,

indicates the predicted log time when all of the indicator variables in the equation are zero -- in this

case, when the first subject executed the first task using the baseline (standard UNIX) help system.

The remaining variables show the effects of different subjects, tasks, and help systems; the

"Coefficient" column shows how much the predicted log time is changed, while the T ratio gives a

measure of the significance of this change. Table 7-4 gives the results of the identical analysis of the

expert experiments.

It is interesting to compare the results of the regression analysis to the cruder measures of help

system variation that were summarized in Tables 7-1 and 7-2. Tables 7-5 and 7-6 demonstrate this

comparison by listing, for each of the non-standard help systems, the actual decrease in average task

time observed in the experiment's, the decrease in normalized average task times, and the decrease in

log time asserted by the regression anaiysis. (By "decrease", what is meant here is the average

reduction in time when other factors are held constant and the help system changes from the baseline

help system to some other help system.) It is reassuring to note that the regression results show

basically the same thing that the normalized averages showed, only wiflaa higher level of confidence.

It should be noted that the T ratios given in the regression tables in this chapter measure only the

significance of the difference of a given condition from the "all zeroes" condition. In particular, the

significance of differences between the other cases is not given explicitly in the tables. However, due



I_i!SUI..IS O!: +ll]l! I,XI_I!RIMi_.NTS 89

Table 7-3: Regression Analysis of Novice l)ata

41)

y=4.29 + _ ct.xi
i---1

Variable Meaning Coefficient T Ratio (Coefficient/SD)

Y I,og of task execution time

Constant Task T 1' Subject S1, ttelp tt 0 4.2889 14.94

X1 Subject S,_ 0.1780 0.65
X2 Subject S; 0.9796 3.64
X3 Subject S4 -0.0556 -0.21
X4 Subject S5 0.1.513 0.56
X5 Subject S6 -0.0480 -0.18
X6 Subject S7 0.2232 0.91
X7 Subject S8 0.1759 0.71

0.1458 0.54
X8 Subject S9
X9 Subject $10 1.2371 5.00
Xl0 Subject $11 -0.2200 -0.79
Xll Subject $12 0.2500 0.93
X12 Subject $13 -0.3570 -1.31

Subject $14 -0.1048 -0.39
X13 Subject $15 0.8545 2.80X14
X15 Subject S16 0.0531 0.20

X16 Help tt I (Hybrid) -0.2675 -1.53
Help tt 2 (ACRONYM) -0.3668 -2.15

!1178 ttelp It 3 (Tutor) -0.6095 -3.52
X19 Help tt 4 (English) -0.3010 -1..65

Task T 2 0.3025 1.01
Task T 0.1039 0.35

Task T_ 0.0736 0.25
Task T, -0.4312 -1.46

Task T_ -0.0560 -0.19
Task T 7 0.4494 1.47
Task T 8 -0.2529 -0.85
Task T 9 -0.4343 -1.47
Task T,,, -1.2560 -4.24
Task T_ 0.6135 2.07 *

1l
Task T.,, 0.3786 1.26

Task T 14 -0.0779 -0.25
Task Tt-, -0.0768 -0.26

Task TI_I -0.7176 -2.39
Task "FI_ 0.7218 2.44
Task T,,, 0.0158 0.05

Task T2,, -0.6085 -1.76
Task T21 1.0288 3.48
Task T22 0.6411 2.17



90 "1i11,iI)I!SI(;N ANI) I!\,'AIIIAIION OI ON-I INI: II1"1P SYSIlM._

Table 7-4: Regression Analysis of I'_xpertI)ata
35

i--_l

Variable Meaning Coefficient q Ratio
(Coefficient/Sl))

Y l,og of task execution time

Constant lask 'I 1"Subject S 1, tlelp 110 4.8348 17.21

X 1 Subjcc! S._ -0.3679 - 1.57
X2 Subject Si -0.5257 -2.55
X 3 Subject S4 -0.1238 -0.53
X4 Subject S5 -0.4390 -2.16
X5 Subject S6 0.1475 0.61
X6 Subject S7 -0.2044 -1.01
X7 Subject S8 -0.8386 -3.48
X8 Subject S9 -0.5267 -2.22

-0.4866 -2.09
X9 Subject SI0

SllX10 Subject -0.3694 -1.49
Xll Subject $12 -1,0153 -4.25

X12 ltelp It 1 (Hybrid) -0.3030 -1.97

X] 3 11elp 1t2 (ACRONYM) -0.0031 -0.02
X 14 Itelp It 3 (Tutor) -0.1906 -1.15

X15 Task T2 0.4794 1.54
Task '1"_ -0.9443 -2.90

X16 Task T_
0.1818 0.54

XI7
X18 Task T5 -0.1622 -0.52
X19 Task T6 -1.4351 -4.69
X20 Task T7 -1.5989 -5.22
X21 Task T8 0.2018 0.63
X22 Task T9 1.1099 3.57

X23 Task T10 0.2173 0.68
X24 Task Tll 0.0249 0.07

Task T12 0.0189 0.06X25
X26 Task T13 -0.0823 -0.27
X27 Task T14 0.5323 1.74 .

Task T1,. 1.4253 4.57
X28 Task TI_ 1.2113 3.89
X29 Task T17

0.2489 0.81
X30
X31 Task T18 1.2841 4.20

Task "I"19 0.0642 0.18
X32 Task T20 -0.1733 -0.54X33
X34 Task T21 0.0156 0.05
X35 Task T22 -0.2482 -0.81



RliSI I .'IS 01: TI ili liXi'I,RIMI:N IS 91

to tile general regularity of tile daUl, the major differences suggested by large difi_,'rcnccs in 'i' ratios

arc borne out by a closer analysis of the data (regression with one of the conditions in question as the

"all zeroes" case). 'i'his is discussed in more detail in Appendix E.

'fable 7-5: Comparison of'l'hree Measures of Novice Variation

Help System H 1 H2 tt3 H4
• Ntlybrid ACRO_ YM lutor English

Average improvement in raw task time (seconds) -30.1 -50.3 -121.4 -65.6

Average improvement in normalized time (seconds) -51.6 -64.0 -106.9 -44.0

Improvement indicated by regression (log seconds) -.27 -.37 -.61 -.30

]'able 7-6: Comparison of Three Measures of Expert Variation

Help System H] H2 H3
tlybrid ACRONYM Tutor

Average improvement in ray, task time (seconds) -32.9 -25.9 -89.3

Average improvement in normalized time (seconds) -52.3 -30.0 -65.5

Improvement indicated by regression (log seconds) -.30 -.00 -.19

7.3. The Importance of Text Quality

Possibly the most interesting and surprising of the results of this entire thesis is the performance of

the hybrid help system (H 1, the s3_stem using the man/key mechanism to present texts from

ACRONYM). This system is completely identical to the baseline system in its mechanisms. It is

improved only in two ways: the texts are better and the key word indexing is more complete. These

simple, non-technical changes produced an enormous and unexpected improvement in the

performance of the users. In fact, this hybrid system performed as well as the full ACRONYM

system; the two were not significantly distinguishable.

This lack of significance was certainly not due to any lack of effort to find it. In fact, it was so

surprising that a supplementary experiment was performed. In that experiment, the subjects each

used both the hybrid system and the full ACRONYM system, instead of just one of those two and

the standard system. It was hoped that this more direct comparison would establish a significant



92 Till: I)I!SIGN ANI) 1,1V,,\I1.!A'I'ION O1,'ON-I INI! I11:1,I_SYS'I I!MS

diflL'rcnce, _s tile earlier d_tt_lallowed the p¢_ssibilityth_lt :l small dit'l_:rencew_tsbeing dw_lrt'cd by the

eft'eels of subject vari_tion, l lowever, no such dift_rencc was found: tile supplemcnt_try experiment

merely rcinfi,)rccd the lack of signiticzmt difference between ACRONYM and the hybrid system.

'l'hc first conclusion that comes to mind from this result is that help access methods matter little, if

at zdl,_mdthat dcsigncrs of futurc hclp systcms should make do with simple mcch_misms, devoting all

of their efforts to clcar and well-indexed texts. This conclusion, however, is somewhat premature.

An alternative hypothesis is that e_ch of the two systems have certain advantages which balance each

other roughly equally. This hypothesis is far more likely, givcn thc rcsults of previous research which

suggest the superior readability and comprehensibility of printed text when compared to on-line texts

[73]. l'hc ACRONYM systcm is u)taily on-linc, and is geared to producing short pieccs of texts in

response to various forms of help requests, which makes it difficult to conceive of a version of

ACRONYM that would make good use of a printed manual, q_nus, it seems likely that the superior

readability of the hard copy (printed texts) in the hybrid system (compared to the screen used in

ACRONYM) compensates for some superiority in the access mechanisms of ACRONYM. (In fact,

there must be some such compensation going on, because ACRONYM is the first reported help

system that performs as well without a printed manual as a simple help system that does include such

a manual. This is itself extremely impori,ant for those concerned with issues of documentation

currency; if it is in fact reasonable, with a system like ACRONYM, to throw away paper manuals

entirely, it will be much easier to ensure that all users will have up-to-date documentation at their

disposal.) Thus it is safe to conclude from the pertbrmance of the hybrid system that text quality is

one of the most important factors in help systems,26 but it is not safe to conclude that help access

mechanisms are entirely irrelevant. The role of the improved key word indexing in the hybrid system

should also not be neglected, although this was probably not as important as the variation in text

quality.

An interesting problem, in large part beyond the scope of this thesis, is to try to determine precisely

what makes the texts in the hybrid system so much better than the standard UNIX manual texts•

Although no comprehensive, detailed study was made, a few informal tests did yield some hypotheses

about the major source of the difference.

Three people who study documentation professionally --one professional writer of technical

documentation, and two researchers in the area of document design --were shown samples of the two

26Indeed, these results clearly speak very well for the book from which the ACRONYM texts were taken [112].



I,>,l!,gtii 'ISO1'11I!: I_XI>I:RIMI!NTS 93

sets of texts and asked to conq_are thcni. All three c'hosc the tcxls from tile hybrid system as the

better texts without hesitation, suggesting at least that the intuition of the proli2ssional can be trusted

to choose the texts that arc ol_icctively most useful. However, they offered varyifig opinions about

why this text was better. One suggested that a major factor was the instructional orientation of the

text: whereas the standard texts spoke in largely passive voice, or at least in third person, the hybrid

texts were largely second person and imperative. Another of the evaluators suggested that the most

important factor was the organization of the text into short, coherent subsections, with meaningful

and highly-visible section headings. The third evaluator suggested that the texts differed simply in

their readability --that is, in the complexity of the words and sentences used in the explanations. Of

course these explanations are by no means mutually exclusive.

One hypothesis that was easily testable was that readability -- as defined by standard metrics of text

readability -- was a major factor in the relative usefulness of the two sets of texts. The UNIX system

includes a utility program called style [15, 16]which evaluates texts according to four standard scores

of readability. The two sets of texts being discussed here were each subjected to this evaluation, with

the results shown in Table 7-7. Despite the enormous differences between the texts, as shown both

by the experiments and by the immediate impressions of everyone who has looked at them, none of

the four metrics yielded any significant differences between the two sets of texts. This will come to

no surprise to the many who have argued against the utility of such readability scores [28].

Table 7-7: Readability Analyses of the Two UNIX Manuals

Metric Sobell/ACRONYM Standard manual Average Difference (SD)
texts texts average (SD) texts average (SD)

Kincaid 9.9 (4.1) 9.9 (4.5) -0.0 (2.8)
auto 9.9 (4.8) 9.4 (4.7) -0.5 (3.2) ,
Coleman-Liau 9.4 (4.3) 9.3 (4.3) -0.1 (1.8)
Flesch 10.2 (4.1) 10.3 (4.1) 0.1 (2.6)

Because no final conclusions could be reached about the exact causes of the performance

improvement obtained with the better texts, it seems likely that readers will want to compare samples

of these texts themselves. Such samples are included as Appendix D. The interested reader can

compare the excerpts presented there from the two versions of the manual and reach his own

conclusions regarding the factors that account for the great difference in their usefulness.



94 il II! i)!!SIGN AND I!VAI I JA'I'ION ()1: ()N-! INI_ Iii!! P SYSTI!MS

7.4. User Expertise and Help System Design

'i'he hypotheses listed in Section 1.3,on page I0, demonstrate a strong beliet; when the experiment

began, in the idea that novice and expert users would have strongly difl'ering needs and uses with

regard to help systems. 'l'his expectation, based on simple intuition, has since been rendered suspect

by Draper 1271. However, separate experiments were conducted on these two categories of users in

order to observe any differences.

'l'he expert experiments paralleled the novice experiment, except that a simulated natural language

system was not studied. (Such as system is generally alleged to be most useful fbr novices anyway.)

The differences between the two groups were indeed striking, but not in a way that was expected

prior to the experiment. Those results were summarized in the preceding sections, and show two

major differences between experts and novices: The experts fared much more poorly with

ACRONYM and with a tutor than did the novices.

The poor performance of ACRONYM for experts was puzzling at first, but at least one plausible

explanation (besides the obvious but unlikely explanation that ACRONYM is simply a bad system

for expcrts although a good one for novices) can be advanced. Draper [27], in his studies of the

nature of UNIX expertise, suggests that the only clear criterion which differentiates experts and

novices on a complex system such as UNIX is their relative ability to find the information they do not

already have. That is, the best definition of expertise in a system may be the ability to use that

system's help facilities, both on and off line. If this is the case, then the results of this study make

perfect sense: by improving the texts but keeping the mechanisms the same, the hybrid system

allowed the experts to utilize their expertise with the help system while gaining access to better help

texts. ACRONYM, on the other hand, made up for the fact that it provided better help texts by

making the experts learn entirely new help mechanisms. An attempt was made to test this hypothesis

by studying UNIX experts who used ACRONYM over a longer period of time, but this proved

inconclusive. 27

It should be noted that the novice and expert tasks did include three overlapping tasks; these were

tasks that involved simple commands, but the commands were invented by .the experimenter and

27Approximately a dozen UNIX users used a modified version of ACRONYM as their primary help system for a month.
At the end of that month, however, it became dear that the average user had only needed help a very few times, and in most

cases had needed help with regard to _stem calls, subroutine libraries, or other aspects of UNIX not covered by the
ACRONYM database. "Ihus the experts never had a chance to become as familiar with ACRONYM as with the standard

system. To be successful, it _ems, an experiment like this would have to monitor novices who start with ACRONYM and
keep using it until they become experts. Such a studyis beyond the scope of this thesis.



RI!St:I fS ()1:1111: I:XPI!RIMI(NIS 95

hence were unknown m the experts. (Specifically, the commands were deL Isd, and undei, which

rewrsibly delete files, list deleted files, and restore deleted files, respectively.) i lowever, tile amc,unt

of data provided by these three overlapping tasks was inadequate to shed any additional light on the

diftcrences between experts and novice perfbrmance.

7.5. Variation due to Tasks

As the regression analysis ('l'ables 7-3 and 7-4) shows, there was a significant amount of variation

due to tasks. 'l'his is not surprising; some tasks are inherently harder than others, and thus l:ake

longer regardless of the help system used. However, the regression analysis merely tells us which

tasks were hardest; it does not shed any light on the question of whether harder or easier tasks fared

particularly better with one help system or another.

In fact, the results become considerably clearer when the difficulty of the tasks is taken into

account. For example, Figures 7-1 and 7-3 plot the average time taken on a given task using the

baseline help system against the average time taken using each of the other help systems. These

graphs show quite clearly _at the differences detected by the study are more meaningful for the

longer tasks.

This might suggest to the alert reader that, by omitting the data from the shorter tasks, a formal

analysis might yield statistically significant differences between help systems that are grouped

together as not distinguishable in "Fables7-3 and 7-4. This indeed is a reasonable supposition, but not

one that proved to be correct when the analysis was performed. The significance levels did increase

as the cutoff for task times was increased, but the amount of data became inadequate for the

regression analysis before a level was reached at which further significant results could be detected.

ACRONYM seemed to benefit the most by eliminating the shortest tasks, possibly because its more

complicated mechanisms introduce a relatively large constant factor into each task execution,

regardless of its length. "The effect of omitting data for those tasks with average baseline times less

than 2.5 minutes is shown in Figures 7-2 and 7-4. The relative performance of ACRONYM and the

hybrid system in the expert data is most interesting in this regard. Clearly ACRONYM fared much

better for the more difficult tasks than for the shorter ones.

It is also interesting to consider the possibility that different help systems may have been the most

useful on different tasks. In Figures 7-5 and 7-6, the average time on each task is plotted for each of

the different help systems. In these graphs, the x axis simply represents 22 points, one for each of the

tasks. The tasks here are ordered by decreasing average task time with the baseline help system, in



9() TIll; 1 )i:SltiN AN l) I:\':\I (!ATION Ot ON-I INi: I I1_1!' SYS'II'MS

I,'igur e 7-1" I)itticully of Novice 'l'asks and t leip System Variation

-_ 600
a, _, Baseline (man/key)
<__-- --- _ HybridQ. ,
_, ..... -_ ACRONYM

--_ 500 t,,N _ _ Tutor

E _ .- -- -x Simulated English

400

300 x

2oo o -

E 100 .o. .... _

.. . ,. , , , ,
0 50 100 150 200 250 300 350 400

<_ Average time (seconds) with baseline help

Figu re 7-2: Help System Variation on the tlardest Novice Tasks

600i 1,3 = Baseline (man/key)
•_ <__-- --- 0 Hybrid

_._..... -_ ACRONYM
5OO¢:b ,"r--- - -_ Tutor

E _ _ -- _<English
(b

_, 400

300

i200

E 1001 O-,: .... ...--" •.
X X

_ , I I ,, I I I I I I

0 50 100 150 200 250 300 350 40(3

_Z Average time (seconds) with baseline help



RI!SUI .TS O! 1111: I!Xt'I!I_ IMFN rs 9"]

Figure 7-3: l)ifliculty of t_xpen 'l'asks and Help System Vdriation

600 _ Baseline (man/key)

0----- _ Hybrid

500 _ - -_ Tutor ./

.....-_ ACRONYM /_

'_ .7.!
400 <>

300 * _ ._ ..-"" '" ...."<>
.... ...._....-. ...i. ....."0

O0200 _ • /'S-_ " ....
.flmlm",_i _'..._'"" t-

• ..--S:- :>" I - --- - I
E loo ..... ,_ ,>-_ .o^__ .._ _,,I- ,,

-- i i i i I i

0 100 200 300 400 500 600

'¢' Average time (seconds) with baseline help

Figure 7-4: Help System Variation on the Hardest Expert Tasks

"_ 6001 _l--- Baseline (man/key) '
J_ Hybrid

• ..... -_ ACRONYM
500l _ - -A Tutor

E
<>

400

.__ ] _ . • / . 1" I "

,_ 100 - "_ z_

li.. I I I I I I

0 100 200 300 400 500 60C

'_ Average time (seconds) with baseline help



98 11!!; I)!!SIGNAN1)I:VA1,I!ATIONO!:ON-IINI: 111:1PSYSTI!MS

order to make the graphs more readable. The tasks are listed in that order in 'l'ables 7-8 and 7-9, so

that the anomalies in file figures ma_ be allalyzed easily. I:igure 7-f_suggests, tbr example, that

ACRONYM could be fine-tuned by improving its help for the "rev" (0 2) and "Is" (O 16)commands.

Obviously, it is possible to interpret these results in several ways. By isolating the tasks on which

ACRONYM performed most poorly, it is clearly possible to find several particular ways in which

ACRONYM and (more certainly) its database can be improved. Although this would be an obvious

next step in the development ot'a real-world system, its usefulness in this methodology is somewhat

suspect. In particular, if further experiments were conducted to verify the improvements, then they

would be susceptible to charges of having tailored the system to suit the tasks being tested. On the

other hand, if the data from the tasks on which ACRONYM fared most poorly were simply omitted,

this would be committing the classic experimental error of only considering the data that matched the

hypotheses. The best that can be said is that the results clearly demonstrate ACRONYM's usefulness

on certain tasks, while calling into question its usefulness for a few other tasks. Nonetheless, there is

no reason to assume that the particular improvements this analysis suggests would not significantly

increase ACRONYM's overall performance in the experiments.

The varying difficulties of the experimental tasks are a primary source of variation in the

experiment. Observation of the distributions of average task times for each help system can yield

additional insights into the way in which varying the help system affects the task execution time. This

is depicted for the novice data in Figure 7-7 and for the expert data in Figure 7-8. In each of these

figures, the first graph shows the average time to execute each task for each help system, ordered in

decreasing time within each help system. Thus, the various values at the same point on the X-axis are

not comparable in this graph, which should be viewed only for the distribution of average task times.

The remainder of the figures shows the distribution of the average task times as a separate histogram

for each help system, to further clarify the diferent distributions. Figure 7-7 suggests again, for

example, that while ACRONYM and the hybrid system were not distinguishable overall, this may be

due to a few glaring imperfections of ACRONYM with regard to certain tasks, and that the

fundamental ACRONYM paradigm may well be better.



RI.iStil .rs o1:11 I1! I!XI't:RIMI!NIS 99

Figure?-5: Relative l>erformanceof the Ilelp Systemson I-:._ichNovice'l'ask

_3 600 0--------0 Baseline(man/key)

x.'_--- --- _> Hybrid, ...... , ACRONYM
A----A Tutor

_, x -- --x Simulated English
..

500 ,,
?

_ ,',

400 :'
q i" '

'.

300
: I \

i -I
i s!_200 _ I

,, , , . ,, \ _._
loc ,_: ;'i i. i,i _i . _ , / _, i/

, : .... , .._k, / , i.f

O 2 4 6 8 10 12 14 16 18 20 22
Task number, from table below

Table 7-8: List of Novice Tasks, Ordered as in Figure 7-5

Find string in file (grep) Oll List deleted files (lsd)
oO! Move file (my) O12 Time of day (dale, uptim_ whenis)
Oi View file backwards (rev) O13 Rename file (my)
Oi Print file on dover (cz) O14 Change password (passwd)
O Delete full directory (rm -r) O15 Delete file reversibly (del)
O Message to another user (send write) O16 List files (ls)
O View file (cat, pr, more) O!7 Print working directory (pwd)
O Delete empty directory (rrndir, rm -r) O18 l_.istcurrent users (u, users, w, who,finger)
O Print calendar (cal) O19 Copy file (ep)

O Send mail (mail) 020 Restore deleted files (undel)

O 0 Make new directory (mkdir) O21 Change directory (ed emir)



100 " TIll:. Ill:SIGN ANll!!VAi I1AIION OI:ON-I INI! i1111P SYSTI:MS

l"igure 7-6: Relative Perfimnance of tile ilelp Systems on I_;ach Vxpert Task

._ 60 _ Baseline lman/key)

G,----- _> Hybrid. ...... _ ACRONYM

A---A Tutor

.E 50

4oo

I. li
300 i _ ii

, I ' I;
I

, , I I

I I

2oo ...; t i ,. . ,_
'

i \!i ' ......
' ' t/, / 'i,, i 4 ', " ", ' "' ..,oo i :

_'. _"gxx_¥:_:'/\\2W-_."-0.._,.-o-_-
'..__

0 2 4 6 8 10 12 14 16 18 20 22
Task number, from table below

Table 7-9: List of Expert Tasks, Ordered as in Figure 7-6

00 View only printable strings (strings) Oll l.ist processes with no terminal (ps tp?)
01 Execute remote command O12 Change file protection (chmod o-r, chmod 640)

(emuftp r g- = "[date")

0 2 Retrieve file from Onyx server. O Send to user on remote machine
(ecp -u guest guest "[onyx](AltoDocs)chat. t_" chat.tty73 (rsend user(__host,send user @hosO

0 3 Set setuid bit (chmod u+ s, chmod 4xxx) O14 Print file on dover with header (cz -h "...")
04 Cancel pending mail requests (mailq -retain) O15 IJst processes for all users (ps a)

5 Sort in reverse order (sort -r) O16 Pnnt on dover specifying font (cz -J)
06 Undelete old version of file (undel -g) O17 Dclete tile reversibly (del)
07 Sort ignoring capitalization (sort-j) O18 l,ist processes on terminal ttypa (ps tpa)

8 Find i number (Is "0 O19 List files by time modified (Is "0
0 9 Send to user logged in twice 020 IJst deleted files (lsd)

(send -all. send user ttyxx)

O10 List space occupied by deleted files (/sd -0 O21 Restore deleted file (undel)



RI!SL :1IS Ol: rl'!II! I!'<t'I!RIMI'N! S 101

7.6. Variation due to Subjects

Variation between subjects is a common problena ill studies of this kind. 'l?hc design of the

experiments reported here v_ascarefully structured to minimize the impact of such variation: this is

the reason that each subject used both a variable help system a/td a baseline help system. While this

technique pm,,cd effective enough to allo_ real differences to be detected, it is worth considering in

some detail how much the actual subjects varied in their pertormance.

A regression analysis identical to the one reported above, but omitting all data on the

correspondence between users of the variant help systems and the baseline help system, was

performed. In Tables 7-10 and 7-11, the results of that analysis arc summarized. Here, the same

subject using two different help systems was treated as two different subjects. As is clear from that

table, fewer significant differences were visible in this analysis, and the difference between the tutor

and the baseline system was exaggerated somewhat. (This latter phenomenon might be coincidental,

or might indicate that users with a human tutor in the first half performed better with the baseline

system in the second half because of that initial positive experience.)

It is also instructive to consider the degree to which certain help systems performed best for

diftizrcnt individuals. In 'Fables 7-12 and 7-13, the normalized ratios of average task time a subject

needed with a given help system to the average for that subject on the baseline system are given for

each subject in the experiment. (The normalization is necessary because the tasks in the second half

of the experiment are, on average, harder than those in the first halE) These tables show clearly the

degree to which the success of the help systems depended on the nature of the individual using them.

Most notably, one of the four novices using the simulated English system did unusually poorly, as did

one of the experts using a human tutor.

7.7. Retention Results

After each experiment, the subject was given a retention test. This test was designed to see what

portion of the experimental tasks were immediately forgotten. The hypothesis was that the help

systems which facilitated quick learning would show a reduction in retention, on the theory that

people remember best what they have to work the hardest to learn. The results are summarized in

Tables 7-14 and 7-15. The only way in which help systems were found to have any significant effect

was that ACRONYM actually seemed to help experts to remember what they had learned. However,

even this result is of very low significance (p (.08).



102 r111: I)l:gl(;N ANl) I!VAII!AIION (.)1ON-I1NI: II!.I !' SYSri!MS

Figure 7-7: 'l'he I)istribution orAver_lge Novice l'ask 'i'imes

600
i-----i Baseline(man/key)
<3----- _>Hybrid

500 ' x-...... _ ACRONYM
, &---A Tutor

x- --x English

40O

3od

\:,
2O0

100 ._ "..._.-:-_--_..<>.. ^
, -._ __.._______ _--_.__",--_._-.:_. _.._._--_.

-_-'--_- _-_- _---_:__----_t
I I I | I I I I I I _ I

0 2 4 6 8 10 12 14 16 18 20 22
Task # (different order for each help system)

(SeeSection7.5for an explanationof thesefigures.)

,_ 14. Baseline(man/key) v) 14._ 4{ Hybrid
'4 121. _ 12

; ..
_ 6 ' E _ ',

;_ 4 -1
2

o 2 4 o 's ;o o 2 4 o o _o
Average minutes Average minutes

v) 14 ACRONYM v) 18 v_ 14 •
4{ 4{ 16 4{ _ Englishv_ 12 _ " _ 12.

10 ,,. Tutor
0 __ 0 12 _. 10.• 0

8 _ _ 8_ 10. _ •

E6_ 8. E6.
;_ 4 --1 _ 4 ;_ 4

2 : 2, 2,
r-] , r-T-I,

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 '6 "8 10
Average minutes Average minutes Average minutes



Ri!_;tii/I SO1:/'l ili, I!XPi!RIM!!NqS 103

Figure 7-8: "l'he I)istribution of Average Expert 'l'ask l lmc

600
._m 0-----------0Baseline(man/key)
¢::: <_----- _ Hybrid
O ._...... . ACRONYM
t,_50(} z__-_ Tutor

_ 400

300

,_ 200 _
\" • .

100

0 5 10 15 20 25
Task # (different order for each help system)

(SeeSectionZ5for an explanationof thesefigure_)

14,. Baseline(man/key) _ 14. Hybrid
12_ _ 12!- (_ __.

_ ,

,,. 10 I. _. 10:
0 0 i
" 8L _ 8i(b • (b ,I

[-1.. ,
0 2 4 6 8 10 0 2 4 6 8 10

Average minutes Average minutes

14r ACRONYM _ 14, Tutor
12L _ 12

_. 101. _ 10
o I o
" 8_ _ 8q) ---,

' . _ - ,

,
_ _ -

_ 4 I
I

2 2 'IF-1
. • I _ [ | m i

o 2 4 6 a ,o o 2 4 6 8 _o .
Average minutes Average minutes



104 '1'1Ii: I)!!SI(JN ANI ) I,IVA,I I.J,,VI'IONOi, ()N-I INI: i11:1P SYSII_MS

Table 7-10: Novice Rcgrcssion An;dysis, Ornittillg Within-Subjects Comparisons

25

y=4.29+ clt
i=l

Variable Meaning Coefficient T Ratio (Cocfficicnt/Sl))

Y l,og of task execution time

Constant Task T 1, !telp 110 4.3858 17.87

X 1 ttelp 11l -0.0598 -0.39
X2 lleip 1I2 -0.1745 -1.16
X3 llelp 113 -0.8542 -5.73
X4 ttelp 1i4 -0.4685 -2.92

X5 Task T 2 0.3699 1.12
X6 Task "1"3 0.1713 0.52
X7 Task "I"4 0.1410 0.43
X8 Task T 5 -0.3102 -0.95
X9 Task '1"6 0.0817 0.25
XI0 Task T 7 0.4983 1.49
XI 1 Task "1"8 -0.1319 -0.41
X12 Task T 9 -0.3133 -0.%

X13 Task 11110 -l.1350 -3.49
X14 Task i 11 0.7345 2.26
X15 Task T12 0.4455 1.35
XI6 Task T13 0.6929 2.07
X17 Task "I'14 0.0166 0.05

X]8 Task ]1115 0.0442 0.14
X19 Task 116 -0.63_ -1.94

0.8428 2.59
X20 Task 1"17
X2I Task T18 0.0944 0.29
X22 'lask T 0.4603 1.40• 19
X23 Task _20 -0.4t34 -11.10
X24 Task '121 1.1498 3.54
X25 Task T22 0.7622 2.35



RI!SI! ;IS O1: 1!I1:.I!Xi'I;R IMi!N'iS ]05

Table 7-11: FLxpertRegressionAnalysis,Omitting Within-SubJectsCornparisons
+4

j,= 4.29+ Z cr+i
i=1

Variable Meaning Coefficient T Ratio (Coefficient/SD)

Y I.og of task execution time

Constant Task 'I 1, ltelp |t 0 4.4350 17.36

X 1 !lelp lI 1 -0. !217 -092
X2 ltelp 1i2 0.0909 0.72

X3 ilelp 1t3 -0.5106 -3.55

X4 Task T2 0.5026 1.53
X5 Task r 3 -0.9955 -2.89
X6 Task 'I4 0.2351 0.66
X7 Task T5 -0.1830 -0.55
X8 Task T6 -1.4237 -4.39
X9 TaskT 7 -1.5876 -4.90
XI

Task T. 0.1498 0.45

0 Task T_ 1.0905 3.31
XX111 Task TI^ . 0.3051 0.91
X?2 0.0397 0.11

Task Tll1
3 Task T12 0.0582 0.18X14

X 15 Task T13 -0.0709 -0.22
X16 Task T14 0.5437 1.68
X17 Task T15 1.3879 4.21
XI8 Task T16 1.2374 3.75
X19 Task T17 0.2603 0.80
X20 Task T 18 1.2955 4.00
X21 Task T19 0.0458 0.12

X22 Task ]'20 -0.2174 -0.65
X23 Task 1 21 0.0524 0.16
X24 Task T22 -0.2368 -0.73



]06 '1'1I1! I)I!SIGN ANi) I..VAI liATION OI'ON-! INI! IIi:1P SYSI'I!MS

Table 7-12: 'l'he Elt_ectof Novice Subject Variation

Subject Nonnalized Other Ited Normalized Ratio of Other
Baseline System Used Score on Score to
Score Other Systcm l_aseline Score

S7 1.0 I11 (1tybrid) 0.6 0.6
SO 0.8 I I1 (1lybrid) 0.6 0.7
S9 2.3 1tI (!lybrid) 2.1 0.9
S6 0.7 I tI (t lybrid) 0.9 13

S8 1.1 119(ACRONYM} 0.5 0.4
S4 0.8 I12 (ACRONYM) 07 0.9
S2 1.7 112(ACRONYM) 1.6 0.9
S11 0.9 It 2 (ACRONYM} 0.8 1.0

S10 0.7 H 3(Tutor) 0.3 0.4
ss 0.9 I-t3 (Tutor) 0.3 0.4
S1 1.0 H3 (Tutor) 03 0.5
S3 0.6 It 3 (Tutor) 0.4 0.6

S12 0.5 tt 4 (English) 0.3 0.6
$13 0.8 [t 4 (English) 0.5 0.6
$14 1.3 114(English) 1.1 0.9
S15 1.0 1t4 (English) 1.9 1.9

Table 7-13: The Effect of Expert Subject Variation

Subject Normalized Other Help Normalized Ratio of Other
Baseline System Used Score on Score to
Score Other System Baseline Score

S1 1.4 tt 1 (Hybrid) 0.5 0.4
S9 1.0 [tl (Hybrid) 0.7 0.7
S3 1.1 tt I (ltybrid) 1.1 1.0
S5 1.3 H i (Hybrid) 1.6 1.3

S2 1.0 I-t2 (ACRONYM) 0.7 0.7
S4 0.9 tt 2 (ACRONYM) 1.0 1.1

S6 1.1 [I 2 (ACRONYM) 1.3 1.2
SO 1.3 - !t2 (ACRON-YM) 1.7 1.4

Sll 0.6 tt (Tutor) 0.3 0.5
S8 1.0 It! (Tutor) 0.6 0.6
S7 0.5 I-I4(Tutor) 0.7 1.2
S10 0.8 "_ (Tutor) 2.0 2.6



NI!SL.:!TS O!: ]/I1: i!XPI!RIMI,NI'S 107

Table 7-14: Short-term Retention of Solutions by Novices
24

y = 4.29 + _ c_i
i-=1

Variable Meaning Coefficient T Ratio (Coefficient/SD)

Y Average Retention Score

Constant Task Set 1.S 1, tt 0 9.775 4.53

X 1 Subject S2 11.000 4.11

X2 Subject S3 10.500 3.92
3 Subject S4 10.500 3.92

X4 Subject S5 5.250 1.67
x 5 Subject S6 11.250 0.40
X6 Subject S7 6.250 1.99
X7 Subject S8 11.750 3.74
X8 Subject S9 11.792 0.61
X9 Subject SilO 10.000 3.34
X 10 Subject Sll -0.292 -0.10
Xll Subject S12 11.292 3.84
XI2 Subject S13 13.208 4.49
x I Subject $14 9.708 3.30
• 3 Subject S15 7.500 2.51XI4

X 15 Subject SI_ 3.292 1.112
X16 Subject S17 6.000 2.01
X 17 Subject S18 8.792 2.99

X18 Subject S19 7.500 2.51
XI9 Subject $20 13.208 4.49

X20 Task Set 2 -1.0500 -1.24

X21 ttelp H I (Hybrid) -0.917 -0.59
X22 Help H 2 (ACRONYM) 0.91.7 0.59
X23 Help It (Tutor) -1.500 -0.79
X24 ttelp H_ (English)• 0.500 0.26



]08 Till; DESIGNANI)I_VAIJ.IATIONO!:ON-i,INI!!!!!1J'SYSTI-MS

7.8. Subjective Results

Finally, an attempt was made to obtain the subjective impressions of a fcw subjects. As was

mcntioncd previously, a supplementary experiment was conducted in which thc same experimental

mcthodology was used, but the subjects were never given the baseline help system: instead, each

subject got both H2 and H 1, ACRONYM and the hybrid system. As was statcd previously, this

experiment yielded no significant diffcrcnccs in performance between the two systems. However,

after cach experiment was over, the subject was given a questionnaire asking him to rate the two

systems on a number of criteria: for each criterion, subjects were asked whether they strongly or

mildly prefcrred one of the systems, or had no opinion. The results of this survey proved mildly

favorable to ACRONYM, as shown in Table 7-16. However, the results of this survey of only four

subjects havc no statistical significance.



Ri,ISLJITS Oi: TI II:. I-XI'I!RIMFN'IS 109

Table 7-15: Short-term Retention of Solutions by Experts
t5

y=4.29+ c z
i=l

Variable Meaning Coefficient T Ratio (Cocfficient/SD)

Y Average Retention Score

Constant Task Set l, S1, H0 21.667 13.41

X1 Subject S2 -0.000 -0.00
X2 Subject S3 -3.000 -1.36
X3 Subject S4 -0.500 -0.25
X4 Subject S5 0.500 0.25

X Subject S6 -3.500 -1.585 Subject S7 -1.500 -0.686
X7 -7.000 -3.16Subject S8
X8 Subjects 9 -0.500 -0.23
X9 Subject S10 -3.500 -1.58

Subject Sll 0.000 0.00
X10 Subject $12 -3.000 -1.36Xll

X12 Task Set2 -1.8333 -2.27

X13 Help H 1 (Hybrid) -0.500 -0.36
X14 Help H 2 (ACRONYM) 2.500 1.79
X15 Help H 3 (Tutor) 0.500 0.36

Table 7-16: Subjective User Preferences: ACRONYM versus the hybrid
For each statement, the subjects circled a number from i to 5, where 1 indicated a strong preference for the man/key system

and 5 indicated a strong prefernce for ACRONYM.

Mean (SD) Statement
3.25 (1.30) The system quickly found the relevant help information.
3.25 (1.09) The system quickly told me what I wanted to know.
3.00 (1.58) The system was easy to use.
3.25 (1.09) The system presented texts that were easy to understand.
4.00 (0.71) The system reassured me when I was confused.

3.00 (1.22) The system made learning how to do the tasks easier.
3.25 (1.48) I felt in control of the help system.
3.25 (1.48) I enjoyed using the help system.
3.25 (1.09) I generally understood what the help system was doing.
3.50 (1.12) I generally found the answers where ! expected to find them.
3.25 (1.09) The system made using the computer more enjoyable.
3.25 (1.48) The system made using the computer more productive (made me work faster).
3.29 (1.27) Overall Average Score

Individual mean ratings ranged from 2.0 (SD 0.91), a mild preference for man/key, to 5.0 (SD 0.00), a strong preference for
ACRONYM.



110 TI il- 1)!!SIGN AND !!VAI .UATION O1: ON-I.INi:. I11-1.1'SYSTI!MS



CONCI_USIONS 111

Chapter 8
Conclusions

The research reported in this thesis began with a simple goal: to find out wily on-line help systems

are commonly so b_Jd,and to see what can be done to make them better. Such a broad goal tends to

be elusive, but a number of important discoveries have been made, which will be summarized below.

8.1. What Has Been Learned About Help Systems

The results reported in Chapter 7 include a number of important specific facts about help systems:

1. A good help system can easily make up half the difference between an ordinary bad help
system and a human tutor.

2. The most hnportant determining factor in the "goodness" of a help system seems to be
the quality and nature of the texts it presents, rather than the details of the help access
mechanisms.

3. Although people read faster from paper, a paper manual is not essential; at the worst,
moderately sophisticated access mechanisms at a high enough bandwidth can apparently
compensate for the total absence of paper.

4. Without spoken input or output or dynamic generation of text using feedback from the
user, English does not seem to offer any significant benefit as an interaction language for
help systems.

5. Expertise in a large and complex domain seems to be in large part a function of the user's
familiarity with the available methods for getting help. Thus expert users benefit less
than novices from the presence of a human tutor or a sophisticated but new and different
help system.

6. Implementing a moderately sophisticated help system, integrating several different help
access mechanisms, is actually a relatively simple and straightforward programming task.
Its cost and difficulty are sufficiently low that it seems reasonable to hold designers of
future help systems to a much higher standard than the help systems in common use
today.

The research clearly indicates that the quality of help texts is far more important than the way those



112 TI IF. I)I:.SIGN AN1)FVAI ,UATION OF ON-I_INi! I II:.IP SYSTFMS

texts are accessed ol presented, inasmuch as "il_lportant" means "contributes to quickly learning to

execute a predefined set of tasks." 1towever, it is surely premature to assume, on the basis of this one

set of experiments, that human intuition is entirely unreliable where help systems are concerned.

Several people who "should have known better" completely expected that either ACRONYM or the

simulated English system would be the clearly superior help system, it is likely that there is some

validity to their intuitions, but that those systems offer benefits in ways not measured by this

methodology.

In particular, it seems possible that having English available may have reduced the subjects'

perception of the difficulty of their rusks, and hence made the learning situation less stressful even if

it did not measurably improve performance. Moreover, it should also be noted that the simulated

English system was not, in some ways, a complete test of natural-language based help systems. In

particular, better results might have been obtained with a system which responded to spoken help

requests or which dynamically generated texts m suit the individual. The system tested here did

neither. Finally, even if the results do suggest that natural language may not be terribly useful in help

systems, it should not be assumed that this result will transfer to other task domains.

As far as ACRONYM is concerned, d;ere are several reasons to suspect that the effort spent on its

mechanisms was not wasted. Most important, the common perception of those who use it that it is a

good help system should not be discounted: these opinions are, in the end, all that really matters for a

system's acceptance. In this light, the most important conclusion of these experiments may be the

discovery that user's perceptions of a system's usefiflness are not directly related to that system's value

for enhancing users' productivity. Additionally, it seems likely that ACRONYM's power actually

penalized it on occasion during the experiments reported here. By providing users with a constantly

updated menu of related help topics. ACRONYM encouraged them to digress from the task at hand

and indulge in exploratory learning. This may have inflated ACRONYM users' scores, while any

resulting additional learning could not be measured in the experiment. Moreover, the detailed

analysis of the help systems' performance showed a few specific outlying data points for which

ACRONYM did unusually badly. It seems likely that an ACRONYM Mark 1I, with improvements

suggested by this data and other observations, might perform significantly better on the same tests.

(A brief analysis of the data omitting ACRONYM's outlying data points more than doubled the level

of significance with which ACRONYM could be said to be better than the hybrid system, but the

difference was still below any reasonable threshold of significance.)

The bottom line, however, appears to be that while fancy t_atures may make the users happy, the



CONC_USlONS 113

most essential factor fi)r getting the job d_me is almost certainly the quality of the help texts. 'l'hose

interested in improving the productivity of training programs should therefore concentrate their

resources on technical writing rather than elaborate help mechanisms, however flashy or impressive

the latter might be.

8.2. What Has Been Learned About Interface Design and Evaluation

Besides the specific infi)rmation about help system, this thesis has produced a few more general

insights into how user interfaces can be designed and evaluated.

8.2.1. The Use of Test-beds in User Interface Design

First of all, the very existence of dais thesis is a powerful argument for tile usefulness of

sophisticated test-beds for interface design. In this case, even though the test-bed, UNIX Emacs [44],

was not designed for such purposes, it proved an invaluable tool. In particular, by providing screen,

process, and string handling facilities at a very high level, the system allowed ACRONYM to be built

quickly and without regard for many irrelevant details. Without such a tool, it is unlikely that a single

thesis could have included both the building of ACRONYM and the series of evaluative experiments

reported here.

Emacs, however, is far fl'om an ideal test-bed for such purposes. Because Mock Lisp :is an

interpreted language, it imposes a noticeable performance penalty for computation-dependent

features. In ACRONYM's case, this was compensated for by writing the crucial subroutines in C and

communicating via the IPC [86], but this mechanism imposes unnecessary low-level details on the

interface designer, in large part defeating the entire purpose of a having testbed environment. A true

compiler for the interpreted language would have been far preferable.

Mock Lisp also offers too meager a set of data types for serious programming; even for interface

design, a wider range of data types is desirable. ACRONYM itself hnplemented a stack in Mock Lisp

as a buffer in which each text line was an element in the stack. Others have even hnplemented

rational numbcrs, but the effort involved was too large to be believed by anyone but an Mock l_isp

programmer [39].

More important, however, a good user interface test-bed would incorporate a number of high-level

features beyond the much-appreciated ones provided by Emacs. Such well-known interface

paradigms as menus and command grammars could be supported at a much higher level. This is



114 T111,.I)I!SIGNANI)I(VAI,UATIONO1"ON-I,INI:ilI!I.PSYSTFMS

done in a few existing systems, most notably the COUSIN system [50, 52]. In designing such

paradigms, it is important not to make the choices available to the interface designer "all-or-nothing"

decisions. That is, if the system provides a basic mechanism for menu interfaces, it should be possible

to implement a slightly different style of menu interaction without totally scrapping the forn'l

provided. This implies that wherever possible the high level mechanisms should be implemented in

the s_Hneextension language commonly used by the interface designer, so that they can be most easily

modified. This is a common principle in the design of software extension languages, as noted by

I)onner and Notkin [26].

UNIX Emacs as a test-bed fi)ruser interface design is discussed at greater length in [9].

8.2.2. Iterative Interface Development

Informal iterative design methodologies are commonly practiced by successful designers of user

interfaces. Unfortunately, except in rare cases, such methodologies often cause designs to evolve

until they only faintly resemble their original design. This causes well-known problems of software

maintenance, as data and program structures are increasingly stretched in directions they were never

intended to go.

The methodology of this thesis offers an exciting prospect for avoiding such problems. By building

ACRONYM hastily within the fi'amework of a general interface test-bed, the system was in a position

to evolve and be evaluated without concern for the integrity of its implementation. After formal and

informal evaluations, the system can be scrapped and totally rewritten, without much worry over the

cost of the initial version. Thus, the existence of the test-bed not only facilitates rnore extensive

evaluation of experimental systems, it also offers a valuable tool to the interface designer in the real

world.

A real world development team with such a test-bed at its disposal might begin with two teams of

programmers. One would immediately begin with a prototype system (or series of prototypes) built

on the test-bed, while the other team began with the serious implementation of the lowest-level

programs in the final system. By the time the interface team's design had evolved to a relatively

stable state, the other team would be well-prepared to implement the already-tested interaction

paradigms. Just as modern programming methodology has established the desirability of the

separation of programs and data, and of data abstraction, similarly future interface test-beds may

finally establish the desirability of separating functionality from interface, and of abstracting the

details of the functional implementation.



CONCI.USIONS 115

8.3. Practitioner's Summary: Advice for Builders of Future Help

Systems

The dominant finding of this thesis was that quality of help texts is far more important than the

methods by which those texts are accessed. Therefore, in designing an on-line help system with

limited development resources, it makes sense to devote the lion's share of those resources to

producing texts of high quality, rather than to building fancy help features. Those features may well

bc useful and desirable, and may in fact bc essential if the goal is a system in which a paper manual is

unnecessary, but they should not be implemented at the expense of high-quality texts.

The greatest problem affecting builders of help system in the past has been lack of knowledge of

what has already been done. None of the techniques used in ACRONYM, for example, werc new.

However, each has apparently been invented anew, in a vacuum, by each of its implcmentors, and no

one has studied help systems enough before hnplementing them to become aware of the good work

that has come before. Thus, the most important advice for builders of future help systems is simply

to be aware, from the survey in this thesis and whatever material can be found elsewhere, of what

kinds of hell) systems have been built. This makes it more likely that anything you invent will

actually be new, and it also allows you to spend time choosing the most apprepriate of known

techniques rather than inventing new ones.

Additionally, it is essential to think of help info_vnation as a knowledge database, which is what it

really is, no matter how it is implemented. If the implementation reflects dais conception, the

knowledge will be stored in a fon-nat that is readily accessible to multiple methods of help access.

This will not only simplify the task of building a multi-modal integrated help system, but it will make

it easier to extend whatever help system is built to include new access methods in the future. (Advice

like this sounds so painfully obvious that it must be repeated that this has simply never been done in

any real world help system!)

Finally, the experience of developing ACRONYM led to a strong belief in the great value of

iterative testing of interfaces such as help system. ACRONYM was built only after extensive user

surveys and protocols, and hence incorporated a wide variety of techniques founded on a broad base

of knowledge about help system. Despite all of this, the experience of observing actual human beings

using ACRONYM was an enlightening one; many major and minor flaws and misfeaturcs became

apparent in this process, most of which are listed in Section 5.5. There is simply no substitute for

observing real users.



116 HlI- I)I!SIGN ANt)I-VAI,UAI1ON OI, ON-I,INF. II!!I,P SYSTI'MS

8.4. lqeseareher's Agenda: Topics for the Future

The evaluation methodology used ill this thesis was very successful in detecting differences in the

utility of different help systems. ]-towever, many questions were left unanswered about which the

methodology could still shed much light. Various alternative help system designs could be tested,

and it would be particularly interesting to see if a modified version of the hybrid

man/key/ACRONYM system which did not include a paper manual would perform significantly

more poorly than ACRONYM or the hybrid version that included a paper manual. (3-'hehypothesis

that it would do so was put forward in Section 7.3.)

Beyond this, the success of the help system evaluation methodology, coming just a few years after

the success of the Roberts and Moran text editor evaluation methodology [8,93, 94, 95], should offer

new stimulation to those interested in developing broader objective measures of the quality of user

interfaces. Indeed, the methodology used in this thesis was probably unnecessarily narrow in its

focus. An interesting direction for future research will be to try to broaden the orientation and scope

of the task list, so that the methodology can become a more general method for evaluating the basic

learnability of any operating system interface, including its help system.

Methodologies such as the one described in this thesis and the one described by Roberts and

Moran generally yield o_alycrude measures, detecting very large differences such as "I'ECO is not as

good as BRAVO" or "ACRONYM is better than the standard UNIX help system". They are

inadequate for answering questions about the lower-level details of user interface design. To answer

these detailed questions, a whole host of unique experiments must be designed, in the tradition of

human factors experiments. Such research is well-established in other disciplines, but is almost virgin

territory for those who would evaluate user interfaces.

Finally, the results of the survey and taxonomy of help systems presented in this thesis lead

inevitably to the conclusion that there have been very few interesting ideas in the history of on-line

help systems. The same paradigms have been rcinvented many times, and implemented in many and

varied (but usually deficient) particular systems, but the actual number of ways to give the user help

is still very small. This may be seen either as a challenge to the creativity of software engineers, who

may yet come up with new methods, or as a phenomenon worthy of deeper understanding, ls there

some fundamental set of facts about the way people interact with computers that dictates the rather

small set of ways in which we have been able to make the computers help. people to learn to use

them? Or have wc not yet really opened our eyes to the possibilities before us?



: , T N _coNcl_us_o, s 117

Part Fou r

Appendices and Bibliography



t 18 Ti !1!l)l:.qlG N ANI)I!VAI UATION O!; ON-I INI! 111"1.!' SYS'I'I_MS



ANNO'I'ATI_I)I:XIq,RIMi,_NI'AIM,'VII!RIAI,S 119

Appendix A
Annotated Expe rimental Mate rials

This appendix contains all of tile materials actually used in the experiments described in this th,asis.

The first part of this material is an initial questionnaire, which was used to determine which, if any,

of the expertise classifications a subject belonged to. The next sections are the

introductory/explanatory material which each subject read, followed by a typing test which each

subject was required to perfoml. After these preliminaries come all of the actual materials presented

to novice subjects, and then the materials presented to expert subjects.

Comments like this one, in italks off to the

right, are. not part of the e.xperimental materials
themseh,es, but are used to explain those materials.

They were r_ot scol by the subjecrs. Other than

these comments, the md.v difference belweer, the

materials presented het_ atzd those seen by the

subjects are differences of page numbering and
other minor formatting differences.



120 TI1I(I)I(RIGNANI)I,N,\I.tJATIONOi:ON-I,INI!I11!iP SYSTEMS

Initial Questionnaire

What ff_llowsis a list of tatsks fllat can be done on a computer. For each rusk, please tell whether

you have ever performed that task on a computer, whether you have ever performed it on a computer

runl3ing file UNIX operating system, and whether you have ever performed it on a computer running

the 1OPS-20 operating system. If you don't understand the description of a task, you may ask the

experimenter for clarification.

For each task, check "Any" if you have ever performed the task on any computer. Also check

"U NIX" if you have performed the task using UNIX and could do so again with minimal effort, and

check "TOPS-20" if you have performed the task using '1"OPS-20and could do so again with minimal

effort. "Minimal effort" means simply that you would need no more than a brief reminder to jog

your memory.

_Any _UNIX TOPS20 Get a list of all the files in your current directory or account.

Any _UNIX _TOPS20 View the contents of a file stored on the disk.

_Any _UNIX _TOPS20 Make a second copy of a file on the disk.

_Any _UNIX _TOPS20 Change the name of a file on the disk.

Any _UNIX _TOPS20 Get a copy of a file printed on paper.

_Any _UNIX TOPS20 Delete a file from the disk.

_Any _UNIX _TOPS20 Get a list of all the files deleted from your current directory, but
still recoverable (not permanently deleted).

_Any _UNIX _TOPS20 Restore (undelete) a deleted file.

Any _UNIX _TOPS20 Find out the name of your current directory or account.

Any UNIX TOPS20 Create a new directory as a subdirectory of your current one.

Any _UNIX _TOPS20 Change to another working directory.

_Any _UNIX _TOPS20 Move a file from one directory to another.



ANNOTATIil)I:,XF'IiR1MI!NTAI,MAI]!RIA!S 121

_Any _UNIX _TOPS20 l)elcte an empty directory

Any UNIX _'I'OPS20 I elcte a directory and all its contents.

Any UNIX _TOPS20 Send mail to another computer user.

_Any _UNIX _TOPS20 Read mail from another computer user.

_Any UNIX _'I'OPS20 Find out ira certain person is currently using the computer.

_Any _UNIX _TOPS20 Copy a file from your machine Io another machine on the same

computer network.

_Any _UNIX _TOPS20 Copy a file to your machine fiom another machine on the same
computer network.

_Any _UNIX _TOPS20 Find all occurrences of a certain word in a file on the disk, without
using a text editor.

_Any _UNIX _TOPS20 Find out what time it is.

_Any _UNIX __TOPS20 Change your password.

_Any UNIX _TOPS20 Send a message to another user, making it appear immediately on
his screen.

Any _UNIX _TOPS20 List everyone currently using the computer.



122 TIlli DESIGNANI)I_VAI,UAllONO!:ON-I,INI_111-I.i'SYSTI:MS

What You'll Be Doing

I11this experiment, you will be asked to perform certain tasks on a computer using the UNIX

operating system. Most of these tasks will probably be things you've never done before. For each

task, you will be given an explanation of what it is you are m,pposed to do, and then you will attempt

to learn how m do it. Please try as hard as you can, but don't worry if you cafft figure a few of the

tasks out.

Before we start, please take a few moments to familiarize yourself with the keyboard. Practice

typing a few things, to get used to typing on it. Don't worry about anything the computer might say

in response to what you type to it.

One key that may be unfamiliar to you is the "Control" key ("Ctrl"). The control key is like the

shift key in that holding it down alters the meaning of the other keys on the keyboard. For example,

holding down "ctrl" and typing "h" is called "control-h" and can be used to erase the last character

you typed. There are a few such control keys that are very useful in typing on the computer, and

these are listed below. If you've never used them before, please try them out and make sure you

understand what they do.

• control-h deletes the last character you typed. You can use it several times in a row to
delete several characters.

• control-u deletes the entire line you have just typed, as long as you haven't pressed the
RETURN key.

• controls stops the computer from printing output faster than you can read it. When you
type control-s, the computer will stop printing until you type control-q.

• control-c tells the computer to stop whatever it is doing. You can type control-c jf you
give some command by mistake and just want the machine to quit what it is doing and
start over with a new command.

When you feel comfortable typing on d_e computer keyboard, please turn the page.



ANNOTATI!I) I_t'I!RIMI,.NTAI. MATI:RIAI ,S 123

Typing rest

The first part of the experiment is a typing test. Type "typing" on the computer keyboard and then

press the IIH'URN key. When the computer says "Ready for typing test," please turn the page and

type the paragraph you scc there. If you make an error and you notice it right away, correct it by

crasing with control-h. If you notice it after you've typcd a few morc words, however, just ignore the

mistake and go on typing.

At the end of each line of text in the typing test, please press the RETURN key, just as you would

on a typewriter.



124 Till! I'}1!51(3N AND IiVAI,I ATION O1: ON-I.INIi I11!1 l' SYSTIiMS

Type This Paragraph:

I lost the boundary of my physical body. I had my skin, of course, but
I felt I was standing in the center of the cosmos. I saw people coming
toward me, but all were the same man. All were myself. I had never
known this world before. I had believed that I was created, but now I

must change my opinion: 1 was never created. I was the cosmos; no
individual existed.

When you have finished, and are ready to go on, please turn the page and type the paragraph you see

there.



AN NOTATlil) I:XPI:RIMI:NTAI, MATF.I_,IAIS 125

Type This Paragraph:

Dispute not. As you rest firmly on your own faith and opinion, allow
others also the equal liberty to stand by their own faiths and opinions.
By mere disputation you will never succeed in convincing another of his
error. When the grace of God descends on him, each one will
understand his own mistakes.

Please DO NOT turn the page until the experimenter says it is OK. Right now, the experimenter

will give you a separate page of instructions to read. While you are reading that page., the

experimenter will type a few commands on your keyboard in preparation for the next part of this

experiment.

The mentioned page of the instructions varied
according to the independent variable, which is the
type of help system being used. That page
explained the use of whichever help system was
being made available to the subject in the first part
of the experiment. All of those pages are presented
in sequence on the pages that follow.



126 nl_-I)ESIGN AND I{VAI,UATION O1, ON-I.INI'I 1IF.I.P SYSTI:'MS

Instructions for Using the Help Systems

For each help system studied in the experiments, a short explanation of the use of the help system

was provided. Since the independent variable in the experiments was the help system, the

explanatory material was the only source of variation in the materials seen by the subjects. Before

each of tile two task sets, each subject saw the explanatory material for one help system only, namely

the help system he would be using in the following task set. All of those pages are presented together

here, but it should be remembered that ti'fisis not how the subjects saw them: what the subjects saw

was a single set of instructions at this point, corresponding to the help system they used in the first

half of the experiment.



ANNOTATEI) I,IXI>I(RIMI!NTAI MATI:RIAI,S 127

Getting Help

Help co,dition tlo: Naked LWIX wilh nuln and
key or HI: ltybrM system with man and key using
A('R ON YM database.

As stated before, you will be given a series of tasks to try to perform on the computer. Since you

won't generally know how to do these tasks in advance, you will have to learn the right way to do

daem. To do this, you will need to use the UN1X help system.

The UNIX help system consists of two separate help commands. The first is the man command. It;

for example, you are trying to find out how to use a program called "build" you may type "man

buil,t" to dae computer. It will then print out a full description of the build command. If the

description is longer daan will fit on your screen, it will print out one screen full and will then type "--

More --" It will then wait for you to press the space key before continuing with the description. If

you don't want it to finish the explanation, you can press the "q" key instead of the space key. This

will cause it to stop giving you that help message.

The other help command available to you is called key. This command may be used when you

don't know daename of the command you arc looking for. For example, if yeu wanted to construct

something, but you didn"t know that the right commazld for d_fing this was called "build," you

wouldn't be able to use the man command to get help. Instead, you could type "key construcf' to the

computer. The key command takes the word you give it (a keyword) and looks for commands that

might be relevant to that key word. Thus, if you typed "key construcf' it might tell you about the

build command. Actually, you don't even have to give "key" complete words; a piece of a word such

as "con" can often be more useful than a complete word such as "construct."

Key prints only short descriptions of commands; its purpose is to help you find the command

you're looking for. You can then get detMled information about it by using the man command, as

described abo'_e. Note: The key command will list a large number of manual entries which are not

actually commands, and should be ignored. Each entry will have a number in parenthesis after it

when listed by the key command. Only those entires with the number "(1)" are relevant to the tasks

you will be performing. Entries with any other number should be ignored.

In addition to the key and man commands, you will also be given a paper copy of the UNIX

manual. The entries in this manual correspond precisely to the explanations printed by the man

command. Thus it is equivalent to type "man build" or to look up "build" in the paper manual.



128 Tilt" I)I!SIGN AND I'VAI.UATION O1:ON-I.INI_ III!IP SYSTEMS

111addition to the paper manual, you will also have at your disposal a booklet titled "UNIX for

l]eginncrs," which you may use as an additional source of information if you so desire. It is less

complete than the other infornlation, but somewhat easier to read and understand, for this

experiment, it is not recommended that you try to read that booklet in its entirety, but rather that you

scan through it in search of particular information as you need it.

The paper manual and the commands described above are the only sources of help you will have

for this experiment. You will not be allowed to ask the experimenter for help in performing the

tasks. However, you may ask the experimenter if you have any questions about how to use the help

commands or the paper manual. You may also ask the experimenter to clarity the descriptions of the

tasks if you don't understand them.

If you have any questions at this time, please ask the experimenter.



ANNOTATI!I)i:.XF'I_RIMFNTAI.MATI!RIAI,S 129

Getting Help

ttelp condition 1t2: ACR ON YM

As stated before, you will be given a series of rusks to try to perform on the computer. Since you

won't generally know how to do these tasks in advance, you will have to learn the right way to do

them. To do this, you will use the ACRONYM help system. ACRONYM is simply a system fllat

gives you help in using file computer in several ways.

You will notice that your screen is divided into five white areas, separated by dark lines. '['he top

such area is not used by ACRONYM; this is the small white area at the very top of the screen. You

should simply ignore this section of d_e screen.

The second part of your screen is called the "Hell) Texts". In this area, ACRONYM will print

explanations of various sorts; this is where you will actually read the help that ACRONYM is giving

you.

The third part of your screen is called the "Help Menu". In this area, you will find a list of topics

for which further help is available.

The fourth white area, the last large white area on your screen, is called flac"Commands Window".

In this area of the screen you will actually type commands to the computer and the computer will

respond to you.

Finally, there is a very small white area -- just one line -- at the bottom of your screen.

ACRONYM will occasionally use this to give you short messages and to allow you to ask cm'tain

questions, as described below.

Now, before you read any further, please make sure that you recognize each of the parts o1:"the

screen described above.

How to get Help

ACRONYM gives you help in four different ways. The first, and simplest, is that it simply watches

what you type and updates the help in flaeHelp Texts accordingly. At any given moment, therefore,

the help in file Help Texts should be at least somewhat relevant to what you are currently doing.

Sometimes you can make ACRONYM give you more help based on what you're currently doing

by typing a question mark ("?"). The question mark can also be used to return to ACRONYM's best



130 TIII.. I)I{SI(;N ANI) I-VAI.UA'I ION Ol ' t)N-I .INI! I11!iI:'SYS'II,'MS

guess about what kind of help you need, if you have caused the help to be changed by giving any of

the tiirthcr help commands described below. Otien, however, }ou will find that a question mark

doesn't cause d_e help to change at all; in such a case, you'll need to use one of the two remaining

methods of getting help.

(NOTE: Sometimes you need to type a question mark as part of a command, rather than as a

request for help. On these rare occasions, you can actually cause a question mark to be inserted like

any other character you type by preceding it with either ,Q (control-q) or a back-slash ("\").)

The most common way of requesting more help from ACRONYM is to choose one of the items in

the tlelp Menu. If you want to see the help described on a line in the Help Menu, you should simply

use the "mouse" to point to it. The "mouse" is the little box-shaped object near your keyboard. You

will notice that as you move the mouse around on the plastic sheet, an arrow will move around on the

screen. 'Fry it and see. You can use the mouse to position the arrow st) that it is pointing at the menu

item that interests you. Then, if you press any button on the mouse, ACRONYM will show you the

help messages on the topic you pointed to. You should especially note that the help menu for every

command includes an "examples" section, a "summary" section, and more detailed sections to

explain various points and concepts.

The mouse you are using, incidentally, is a little picky about where exactly the arrow is pointing.

You should make sure that the body of the arrow is mostly BELOW the line you are pointing at; the

arrowhead should be pointing at the bottom of the line you are pointing at, not the middle or top.

Often, the message in the Help Texts or the choices in the Help Menu are too long to fit in the

appropriate region of your screen. In such a case, a special phrase will appear in the line below that

region, saying "Press HERE to scroll forward" or "Press HERE m scroll backward". By pointing at

the word "HERE" with the mouse, and pressing a mouse button, you can cause the part of the Help

Texts or Help Menu that is not now visible to be moved onto the screen. It is important to notice

when the "Press HERE to scroll..." messages appear, because if you don't notice you may never see

the help messages you need most.

Finally, if none of the help on the screen seems to be doing you any good, just type the word

"help" and press the SPACE key. ACRONYM will ask you to type a key word about which you

want help. (It will ask you for this key word in the message area, the small white area at the very

bottom of the screen.) Thus, if you type "help" and press SPACE, you can then type the word

"cherry" to get ACRONYM to give you whatever help it can find related to the word "cherry". It

won't always succeed in finding the help you want, but it often will.



ANNOrATI'I) I.'.XI'1!RIMI!Ni'AI, MATI_RIAI,S 131

Please experiment with the commands above and try to make sure you understand how they work.

If you have ally questions at this time, please ask the experimenter.



132 1"III:.I)I!SIGN AN1) i!VAI.UATION OI" ON-I ,INI! I1F.I,I_SYSI'FMS

Getting Help

ttelp condition H3: thmtan Tutor

As stated before, you will be given a series of tasks to try to perform on the computer. Since you

won't generally know how to do these tasks in advance, you will have to learn the right way to do

them. To do this, you can ask the experimenter any questions you want. He will answer whatever

questions you ask, so all you have to do is figure out the right questions to ask him.

The experimenter is the only source of help you will have tbr this experiment. You will not be

given an instruction manual, and the normal UNIX help facilities will not bc available to you.

If you have any questions at this time, please ask the experimenter.



ANNOI'ATI!I) I-XI'I!RIM!!NTAI M,kfI!I_.IAI_S 133

Getting Help

Help condition Ill: Simulated English

As stated before, you will be given a series of tasks to pcrtbrm on the computer. Since you won't

generally know how to do these tasks in advance, you will have to learn tile right way to do them. To

do this, you can ask the computer any question you want, in English.

This computer is running a new English-language help system. You can't actually give the

computer commands in English; all of it,,;commands arc in a strict command language, which must

be conformed to exactly. However, your questions about that command language may be typed in

normal, everyday English.

The computer will be the only source of help you will have for this experiment. You will not be

given an instruction manual, and the normal UNIX help facilities will not be available to you.

If you have any questions at this time, please ask the experimenter.



134 'fill" I)iiSIGN AND FNAI,UA'I ION 01: ON-I,INIi i11,_1t' SYSTFMS

The Experimental Tasks for Novices

On the pages that follow are the actual tasks as they were given to the novice subjects. Only one

task is given on each page, to prevent the subjects fi'om reading ,ahead.



ANNOTATiil) [.!XPI!R1MF,NTAI. MNI'I!RIAt,S 135

Task:

7"ask N1: date, uptime, whenis

Get the computer to tell you the correct time of day.

Note that this is deliberately worded to dixtract

the subject away from the correct guess. Had the

subject been asked to get the compu,er to print out
the date attd time. "date" might be a common guess.

However. getting lhe computer to tell the thne is a

more likely desire, and is morn likely to require

help, since the correct command for obtaining the
time is "date."



136 T1IF.I)FSIGN ANI) I{VAIUAIION 01:ON-IJNI,_II1/IP SYSTEMS

Task:

Task N2: passwd

Everyone who uses the computer has a secret password which he uses at the beginning of each

session with file computer, in order to prove his identity to the computer. You haven't needed to

provide this password because the experimenter took care of that before you began. However, your

task now is to change that password.

The password before now was "dinner". Your task is to change the password to "breakfast".



ANNOTATI'I)I:.XI'I!RIMI!NTAItMATI_RIALS 137

Task:

Task N3: Is

A computer file is an organized unit of intbnnation, such as a manuscript. The computer you are

using has thousands of files. To make it easier to find filings, and for other reasons, these files are

arranged into groups called "directories". At any given moment, you are dirccdy connected to one of

these directories, and you may refer to the files in that directory simply by their names.

Your task is to get the computer to list the files in your current directory.



138 TIli"I)i:SIGNANI)IiVAI.UATIONOFON-IJNI"lll:JJ)SYSTI'MS

Task:

Task N4: cat, pr, more

One of the files in your current directory, you may have noticed, is a file named "readme". Your

task is to read that file -- that is, to view its contents on your screen.



ANNOTAflil) F,XPi_RtMI']NTAI. MATI:J_,IAIS 139

Task:

Task N s:cp

Sometimes it is desirable to have two copies of the same file. Your task now is to make a second

copy of the file called "teatime'" and to name that second copy "readme2".



140 TI IF. DESIGN AND 1,2VAI,UATION OF ON-I ,INF, I IF.I,t' SYSi'I:MS

Task:

Task N6."mv

File names can be changed. Often it becomes clear that a file was not given a very good name in

the first place, and it needs to be renamed. Your task now is to change the name of the file

"readme2" to "copyofreadme". I)o this without making a new copy of the file.



ANNOTATF.DI:XtI,.RMFNIAI.MATI,'RIAI.S 141

Task:

Task N i cz

Your task now is to create a paper copy of the file "readme" that you looked at before. The device

that is used in our department to get paper copies of files is called the Dover. Thus, your task :isto

print the file "readme" on the Dovcr.



142 Till- DESIGNANDI!VAIUATIONOFON-I_lNli111_i,PSYSTIi_MS

Task:

Task N_: de/

Since we don't really need the file "copyofreadme", your next task is to get rid of it. However, our

version of UNIX has two different commands that can be used to get rid of unwanted files. One of

these commands, "rm," gets rid of files permanently, while the other allows you to change your mind

later and "undclete" them again. Your task is to get rid of"copyoffeadme", but in such a way that

we can get it back again later if we so desire. In other words, don't use "rm" -- use the other file

deletion command.



ANNOTA11!I)I!XI'I_RIMliN'I'AI,MATI!RIAI.S 143

Task:

Task N9: lsd

Just as you earlier got a list of the files in your current directory, your new task is to get a listof the

files that have been deleted from your current directory.



144 Till. DESIGNANDI_VAI.UATIONO1:ON-I.INI!IIF.IP SYSTI.'.MS

Task:

Task N IO:undel

Restore the file that you deleted before, "copyofreadme", back into your current directory.



ANNOIATi_I)F.XPl:.RIMI!NTAI_MATI-IHALS ]45

Task:

Task Nil: send, write, rsend

As it turns out, the person called nsb is currently using this computer in another location. Your

task is to get the computer to print a message on his screen that says "Dinner is served." Note that

you don't want to start a conversation with him, but merely to print that single message on his

terminal.



146 TI1I-I)F.SIGNANDI:NAI,UATIONO1:ON-LINEIlEIP SYSTI'MS

New Instructions

In the next part of the experiment, you will be given more tasks to perform on the computer.

However, now the method in which you get help from the computer will change. Instead of getting

help as you have so far, you will have to use a different method. The new method of getting help is

described in a new set of instructions which the experimenter will now give to you. While you are

reading the new instructions, the experimenter will type a few commands on your keyboard.

At this point in the exper#nent, the
experimenter has to type somethi,g to turn the old
help system off and to turn the new one on. At this

point in the experimental materials, another one of
the help _ystem explanations, which were presented
as a group earlier i, this chapter, would be seen by
each subject. This new explanation, of course,
corresponded to the help system the subject used in
the second half of the experiment.



ANNOTATFDF.XPI:IRIMliNTAIMA'I'ERIAI_S 147

Task:

Task N12:cal

Your task is to get the computer to print on your screen a calendar for the month of August, 1984.



148 TIIF. I)ESIGN ANI) [:VAI ,UATiON OF ON-I,INI_ 111!1P SYSTFMS

Task:

Task NI3: rev

Once again your task is to print the file "readme" on your screen, but this time you should print the

entire file backwards -- that is, printing each line in reverse order.



AN NOTATED i'XI'I!R IMI!NI'AI, M.,\I'I;IUAI,S 149

Task:

Task N I4: pwd

As we have said before, you are always "connected" to some particular directory which contains

your files. Until now, we haven't paid any attention to d_e directory name, and have only dealt with

files in your current directory. In order to learn more about directories, you need first to find out the

name of the directory you are currently working with. Thus your task is to find out the name of your

current directory.



150 "1111{I)t!SIG N ,\NI) I(VAI.UATION O1: ON_I,INI" II1!1,1_SYS'IEMS

Task:

Task NI5: mkdir

Your next task is to create a new directory within your current directory. The new directory should

be called "'newdir". Note that a directory is just a special kind of file, and will look just like a file if

you get a list of the files in your directory with the "ls" command.



AN NOT,VI'I!I) F,XPI!I_.IMi!NI',\I , MAI I.',RIAIS 15 l

Task:

Task N I6: cd, chdir

Your current directory has a subdirectory called "urgent". Your task now is to change your current

directory to be that "urgent" subdirectory, instead of what it is now.



152 TI1I:.DESIGNAND I:N/\I,UA'I'IONO1:ON-i .INI'I!ti:IP SYSTI:MS

Task:

Task N 17:m v

Now that you have made "urgent" your current directory, you will find that it has a file named

"fi'ank" and a subdirectory named "beans". Without copying the file, move the file "frank" out of

your current directory and into the "beans" subdirectory.



ANNOTATI(1) I,_XPi:RIMI,,N'IAIMAII!RIAIS 153

Task:

7"askNIS: rmdir

Your current directory has another subdirectory called "empty". This directory is, as its name

implies, empty -- there are no files in it. Your task is to delete that empty director),.



154 TIll t 1)I!SIGN ,,\Ni)i!VAI UA 1ION 01:ON-1,1N!! II1ii P SYSI'I!MS

]'ask:

Task NI9: rm-r

Y()ur current directory has yet another subdirectory called "fifll". This directory has several files in

it, Your task is to delete the directory and all its files with a single command.



ANNorI'ATI:D IXt'I!RIM iiN'IAI_ MAIiiRIAI ,S 155

Task:

Task N2o: u, users;finger, w who

Your task now is to get a list of all the people currently using this computer.



156 !111! I)!!SIGN AND I_V,\I_I.IAIION Oi: ON-I.1NI_ II1,I P SYSiI!MS

Task:

'['ask N21:grep

There is a file in your current directory _lamed "searchme". It is a very long file, too long to read

quickly in its entirety. Your task is to get the computer to search through the file and only print out

those lmes that contain tile word "chocolate".



ANNOTAI'I:I) iiXPI!I_,IMI_NIAI, MATiiRIAI S '[57

Task:

Task N22: mail

Electronic mail is a convenient way for two computer users to send messages to one another. There

is a user of this machine who is known to the computer as "nsb". Your task is to send a piece of mail

to nsb.

The subject of your mail should be "Good News." The actual message should simply state, "Keep

working, you'll get done eventually."



158 Ti il,_I)I!SIGN AND EVAI,LIAI'ION OI.ON-I.INI:II 1l.',1P SYSIi:MS

The Experimental Tasks for Experts

On the pages that fi)liow are file actual tasks as they were given to the expert subjects. Only one

task is given on each page, to prevent the subjects from reading ahead.



AN NOTATI;.I) I:XPI'R IMI:.NiAI ,NIATI!RIAI $ 159

Task:

Task El: cz-f

Print the file sample.c on tile Dover, using TimesRomanl2 as the font.



160 1I11I)I:SIGNANI)I!VAI,UATION01 ONI IX_l{!11;1,1'SYSIFMS

Task:

Task E2: sort -r

There is a file in your current directory called "unsorted". Sort that file alphabetically by line in

reverse alphabetical order, using a single command to sort die text and print the sorted output on our

screen.



AN ",_OTATI!I) I-Xpl !RI,N.II_N'I'A1.M ATI:.I_IM.S 161

Task:

Task !_: Is-I

Get a list of all files in your current directory, sorted by time modified rather than by file name.



162 Till:.I)IiSIGN ANI) EVAI.UATIONOi:ON-I_INI IIFI P SYSTEMS

Task:

Task E4: chmod o-r, chmod 640

113your current directory is a file called "shared". Currently it is readable by anyone, but writable

only by you. Change its protection status so that only you or members of your login groups can read

it.



AN NO IAT! !t ) l".XPI!RIMI:NI 1\1, MA'Ii ;'RIAIS 163

Task:

Task Ej de/

First, change to the directory "rodeo" by typing "cd rodeo".

This version of UNIX has two commands that can be used to get rid of unwanted files. You are

probably already familiar with one of these, rnL The other command, however, gets rid of files

without erasing them, so that it is possible to restore them if they were deleted by mistake. Your task

now is to delete the file "useless" from your current directory, but to do it in such a way that it can

later be restored if necessary.



164 TI IE I)i!SIGN AND IiVAIL'AIION O1' ON-I,INI! 111!IP SYSTF.MS

Task:

Task E6: lsd

Get a list of all fl_efiles that have been deleted from your current directory but can still be restored.



ANNO'fATF, I) I:.XI_I!RIMI!NTAI MA'I/".I_IAIS 165

Task:

Task ET: undeI

Restore to your current directory the file "useless" that you deleted a short time ago.



]06 IIIE I)liSIGN ANI) I;VAI,UA'I1ON Oi: ON-I .INI:. 111_]P SYSil!MS

Task:

Task E8: Is-i

First, type "cd .." to change your back to the parent of your current directory.

There is a file in your new current directory called "whatnumber". Find out what the i-number of

that file is.



AN NO'IA'IF.I)I,IXPI:RIMI'NTAI.M/Vrl;.RIAI.S 167

Task:

Task Eg: chmod u . s, chmod 4xxx

There is a file in yoL|r current directory called "runme". It is an executable (mnnable) file. Your

task nov_is to change its protection status so that when it runs, whoever runs it has the privileges of its

owner during its execution. '['his is known as "setting the setuid bit".



168 TI|I,i I)I!31GNANI) I'_VAIL_,\'[I(.)N(.)i:ON-I ,INI!111:!_PSYSTI'MS

Task:

Task 1,1o."• send-all, send nsb ttyxx

Send file message "Time for dinner" to the terminal of nsb, who is currently using this machine.

nsb was aIw¢o's logged op_ twice, causing the

program to complain and require special
#tslruclions.



ANNOTA'I/!i) IiXPliRIMI!NTAI MATI!RIAIS 169

Task:

Task Ell: ps a

Your next task is to get a list of all processes currently running on the system, for all users (not just

your processes).



170 TIlE I)I!SIGN AND I!VAI I?AT1ON O1: ON-i,INE 111!1,P SYSTI!MS

New Inst ructions

In the next part of the experiment, you will be given more tasks to perform on the computer.

However, now d_e method in which you get hell) flora the conlputer will change. Instead of getting

help as you have so fhr, you will have to use a different method. The new method of getting help is

described in a new set of instructions which the experimenter will now give to you. While you are

reading the new instructions, the experimenter will type a few commands on your keyboard.

At this poiut ihe experimenter had to type
something to turn the old hell) system off and to
turn the new one on. This page in the experhnental
materials wasfi)llowed by the description of the help
system the subject was to use m the second half of
the experiment: all such pages were reproduced
earlier in this appendix.



AN NOTATI:D I_XPi:i,_IM I!N'I'AI, MA'I'I!RIAI,S 171

Task:

Task El2: cz -h "..."

In your current directory is a file called "niceday". Please print that file on the dover with the

phrase "Have a nice day" at the top of each page.



172 "llll'i I)I:.SIGN AND i,NA! UATION O1:ON-I.INE III:J,P SYS'[IiMS

Task:

Task Ely sort -f

Your next task is to sort die file "sortme" alphabetically by line, ignoring capitalization.



AN NOTATI!I) t:,XPi:IUMI'_NTAI_,MATERIAI,S 173

Task:

Task El4: mailq-retain

Cancel all of your pending (queued) requests to send mail to other machines on the network.

(Even if there aren't any pending requests, type the command that would cancel them if there were.)



174 IIIF. DI'SIGN ANI) I-VAI,UATION O13ON-I ,INI_:.Ill!IP SYSTEMS

Task:

Task E15:strings

There is a press file (binary Dover format file) in your current directory called "out.press". Press

files are full of control characters, which are unreadable, as well as die actual text they are supposed

to print. Your task now is to view on your screen the readable (text) chaiactcrs in that file (out.press),

,_,ithout printing the control characters, which could mess up your terminal.



ANNOTAI'I!I)I,_XPI:.I{IMI:NI'AI. MATIiRIAI.S 175

Task:

Task l:16: cmufip r g -= "[date"

Another machine connected to this one on the network is CMU-CS-G. It is possible for you,

logged in on one machine, to executc commands on other such machines on the network. Your task

now is to get CMU-CS-G to tell you the date and time. "l'hen ask your current machine to tell you

the date and time; they rarely agree. (Hint: Use the program "cmuftp".)

A common error in giving this command

actualO' causes the current machine to print the
dale and time. Thus, the request for comparison is

actuall), an opportuniO, for the subject to discover

his"error. This task is tlOl quite satisfactory: what I

want is a simple command to be executed on a

remote site via the ftp/cmuftp mechanism.

However. simple directoo' listings and listings of

users aren't acceptable, because these may now be

done without touching ftp or cmuftp, fingering or

ls "[g]/usr/foo" will do those jobs without, the

subject having to learn how to use ftp for remote
processes. I may replace the "date and time" task

with something else if I come up with an), better
ideas.



176 TiIF,I)I'SIGN AND I!\:AI.LJATIONO1:ON-I.INE IIi!I,PSYS'I/:MS

Task:

Task t;,17: uncle/-g

There is a directory in your current directory called "dir2". If you change to that directory ("cd

dir2") and type "lsd", you will find that there are four old deleted versions of _ file called "dcleteme"

that arc still recoverable. Your task now is t_ undelete the oldest version (original) version of that file,

leaving the newer versions deleted. (Nt)te that the oldest file has the lowest generation number.)



ANNOTATlil) I'XPI_RIMI:NTAI.MATI'R.IAIS 177

Task:

Task El8: ecp -u guest guest
"[onyx]C,lhoDocs>chat. try" chat. tty

One machine on the Ethernet is called "onyx". On that machine is a file called <AltoDocs>chat.tty.

Your task is to copy that file from Onyx onto your current directory. You can use the account

"guest" with password "guest". Warning: Neither "ftp" nor "cmuftp" will work for transfers to and

from Onyx.



178 T111:.I)I!SIGNANDI!VA!UAIIONO1:ON-IINI!111,:1P SYSTI:MS

Task:

Task El9: rsend user_host, send user_hosl

The user nsb is also logged in on the machine CMU-CS-K. Send a message to his terminal on that

machi ne that says "Time for lunch".



ANNO'IWIF,I)I'XPI{RIMI{NTAI,MATI'RIAI,S 179

Task:

Task lifo: ps tpa

Get a list of all processes that are currently running on the terminal "ttypa". Use a single command

to do dais.



180 1"IIE 1)iiSIGN ,\NI) I!VAI.UATION 0I: ON-I,iNI:_1I1!1,P SYSTI,'MS

Task:

TaskE2Fps tp?

Gct a list of all processes that are currently running on this machine but are not associated with

ANY terminal.



A_NOTATi:,I) I:,XIq'RIMI:NfA! MATliRIAI.S 181

Task:

Task t(22: Isd-t

Find out how much total disk space your deleted files in this directory are taking up. I)o this with

the "lsd" command.



182 TI IE I)!!SIGN AND I-VAI .UATION O1:ON-I,INI! 111"1t' SYSTFMS

Discussion and Posttest

After the experimental tasks were all completed, subjects were debriefed and were given a posttest

to analyze their short-term retention. The associated materials appear on the following pages.



ANNOTATI!Di:.XPIiRIMI-NTA1.MA'IERIAI£ 183

Discussion

At this point, the experimenter would like to talk to you about what you have done in this

experiment. When he is done talking to you, there will be one final short quiz about what you have

learned.

Tile ",tebriefi/lg'" session was a fruitful source of

anecdotal infi)nnalion attd general htsighls into the

subjects'joys and fiustrations inpolved in the use of

the help system.





184 111I.iI)I_SIGNANI) I!VAI.UATIONO1:ON-I1NI!Illq.P SYSTFMS

UNIX Learning: Posttest
Novice version

What follows is a list of tasks, similar to those you performed or attempted to perfi)rm during the

experiment. Next to each task, please write'down the command that should be used to perforrn the

task, if you remember it.

I,ist the names of the files in your current directory.

Print the contents a file on your screen.

Make a copy of a file.

Rename a file.

Print a file on paper on the Dover printer.

Send mail.

Delete a file.

Get a list of your deleted files.

Restore a deleted file

Print the name of your current directory.

Create a new directory.

Change your current directory.

Move a file from one directory to another.

Delete an empty directory.

Delete a non-empty directory and all its contents.

Get a list of everyone currently using your computer.

Display only those lines in a large file which contain a certain word.

Send a message to the screen of someone else who is currently

using the computer.

Print today's date and time.



ANNOTAI'I!I)I!XPI!RIMIiNTAI_ MATERIAI,S 185

Change your password.

Print the calendar for a certain month.

Print a file backwards on your screen.



186 "IIlF 1)I,'.SIGNAND FNAI.UATION Oi: ON-I.INI! IIEI.I' SYS'I'I{MS

UNIX Learning: Posttest

F.xpert Version

What follows is a list of tasks, similar to those you peril)treed or attempted to perform during the

experiment. Next to each task, please write down the command that should be used to perform the

task, if you remember it.

Print a file on the Dover with every page labeled with a certain
phrase at the top.

Print a file on the Dover using a special font.

Sort a text file alphabetically by line, ignoring capitalization.

Sort a file in reverse alphabetical order.

Copy a file from file machine called Onyx.

Find out the i-number of a file.

List all files in your current directory, sorted by time modified.

Cancel all outgoing mail requests.

View only the readable characters in a press file.

Reversibly delete a file.

Get a list of deleted files.

Restore a deleted file.

Restore the oldest of several versions of a deleted file.

Make a file writable by all members of your groups.

Make an executable file set the setuid bit when it runs.

Send a message to the terminal of someone who is logged in at
more than one terminal.



AN NOTATIil) iiXI'I!RIMI!NTAI. MAI !!RIAIS 187

Send a message to the terminal of someone who is logged in on
another maclaine.

I.ist all the processes currently running for all users.

l,igt all the processes currently running on a particular terminal.

l.ist all the processes currently running on no terminal.

Execute a command on another machine on the network.

Find the total amount of disk space occupied by your deleted files.



188 Till! I)I_SIG N ANI) F.VAI.UAI ION O1: ON-1,1NE l lI!IP SYSTI'MS





WlIATACRONYMlOOKH) I.iKI-TOTtlEUSI!R 189

Appendix B
What ACRONYM Looked Like to the User

Without using a piece of software, it is generally difficult to obtain an accurate picture of how that

software actually works. Since the degree to which the results of this thesis are interesting depends, in

significant measure, on what you d_ink of ACRONYM as a help system, it is especially important, for

the understanding of this thesis, to have a good grasp of what ACRONYM was like.

To help readers who have never been able to see ACRONYM in action, this appendix shows how

ACRONYM actually looked in use via a series of "snapshot" screens. These screens reproduce

actual ACRONYM screens as faithfully as possible. Unfortunately, they do not capture the location

of the cursor or the pointer controlled by tile mouse, so these will be described in running text under

each screen picture. Also, the "mode lines" which separate ACRONYM's windows were reverse

video (white on black) in ACRONYM, but are here simply shown as ordinary text surrounded by

lines. Finally, die rather clumsy technology used to produce these screen images provided an

undesired excess of white space at the bottom of each window; in actual use, each ACRONYM

window, when full, contained text right up to the mode line.

The first screen picture shows the ACRONYM screen as users saw it at the beginning of the

experiments; this is what ACRONYM looks like when it starts.

Those not familiar with UN IX should be aware that the dollar sign in the command window is the

standard UNIX prompt, signalling UN1X's readiness for a new command.



190 TI IE 1)F,SIGN AN 1) I!VAI UATION Oi: ON-I ,INI., l ll:l P SYSTI{MS

Welcome to ALIRONYM, If you dor_'t want to be here, press ()EI to exit,

In addition to normal typewriter-style keys. your computer hl,s a pointing
device known as a "mouse." You can mow,_ this device around, causing the arrow

on your screen to move around and point at dlfferent parts of the screen.

In this system, you can use ti_e mouse to get help in several ways.

Io begin wlth. you will notice that the highlighted line underneath the text,

you are now reading says "PRFSS HERE to move forward." If you use the
mouse to pc]int the arrow at the word "HFRE". and then press any button on

the mouse, you will find that the text, in this window is scrolled forward --

that is, the beginning of the text will disappear, and new text will appear
at tF_e end of the window, fry it and see.

If you can't seem to get the window to scroll forward, this probably means

that you ave pointing the arrow a little too high. Note that it is the
arrow head. not its body. that should bc pointing at the word "HERE".

In general, wt,erlever this wi,dow or the one below it has mo:'e text than is

--- Help t,exts -- PRISS HERE to move forward.
** How to use the ACRONYM hell) system

** at: Execute a Shell script at a specified time
** bl): print notices from bulletin board(s)
** blff: be notified if mail arrives and '_ho it is from

** ca1: di,splay calendar
** ralc, nclar: reminder calendar

'' cat: display a text file

** cc: C compiler
*" ccat: Print compressed files in uneompressed format

** cd or ehdir: Change to another working directory

** chined: Change the access mode of a file

"* chat: Communicate with (log in to) another machine on the Ethernet
** ok: check if new mail has arrived

** crop: Compare two files to see if they differ
** cmuftp: Iransfer files to and from other machines on the FitheJnet
** col: filter reverse line feeds

** comm: Compare two files and print matching and non-matching lines
"* compact: compress files to save space
** cp: Copy file

"* cz: convert files to press format and print them on the Dover

-- Help menu_ -- PRESS HERE to move forward,
$

Pre---'_s'?' for cor_text-dependent he,,il,_T [)El.to exit. Press HERE for basic: help.

This is ACRONYM's initial screen, which is what the user sees when ACRONYM first starts up.

This is also what subjects in the experiments saw when they first started using ACRONYM.

In the example that follows, imagine a user who is trying toscan through a large file looking for

occurrences of a single word. He does nol know about the "grep" utility" this is what he needs to

learn from ACRON YM.



WIIATACRONYMI.OOKEI) I.IKE TOTIlE USER 191

Welcome to ACRONYM. If you don't wa_it to be here. press DEL to exit.

n addition to normal typewriter-style keys, your computer has a pointing
device known as _ "mouso." You call nlove this device around, c_lusing the arrow

of_ your screen t(> laove around and point at different parts of the screen.

n this system, you can use the mouse to get help in several ways.

o begin with, y(_u wil} notice that the hi(jhlighted liT_e underneath the text

you are now reading says "PRtSS HERE to move forward." If you use the
mouse to point the arrow at the word "HERE", and then press any button on

the mouse, you will find that the text in this window is scrol led forward --

that is. the heglnning of the text w_ll disappear and new text will appear
at the end of the window. Iry it and see.

f you can't seem to get the window to scroll forward, this l)robably means

that you are polluting the arrow a little too high Note that it is the
arrow head, not Its body, that should be pointing at the word "HERE".

r_ geTleral, whenever this window or the one below it. has more text than is

currently visible, the line at the bottom of the window will offer you a

-- HullW texts --" PRtSS HERE to move forward.

** How to use the ACRONYM help system
** _it: Execute a Shell script at a specified time

** bb: print not,lees from bulletin board(s)
"* l}iff: be notified if mail arrives and who it is from

** cal: display calendae
** calendar: reminder calendar

** cat: display a text file
"* co: C compiler

** coat: Print compressed files in uncompressed format

** cd or chdir: Change to another working directory
** chmod: Change the access mode of a file

** chat: Comlnunicate with (log in to) another machine on the Ethernet
"* ok: cheek if new mail has arrived

** crop: COlnpare two files to see if they differ

** cmuftp: Iranster files to and from other machines on the Ethernet
"* col: filter reverse line feeds

** comm: Compare two files and print matching and non-matching lines
** compact: compress files to save space

"* cp: Copy file
** cz: convert files to press format and print them on the Dover

-- Hel l) menus -- PRESS HERE to move forward.
hel p

Press '?' for context-dependent help, [)EL to exit. Press HERE for basic help.

lype a key word for which you want help: word

Here the user types "help" to request key word help. ACRONYM, on the very bottom line of the

screen, asks him to provide type a key word about which he desires help. The user then types

"word".



192 Till" DESIGN ANI) I:.VAI,UAI'IONOF ON-I,INE IIFIP SYSTFMS

Select, the apllropriate tltl:ntt item to find out about the, cottltllg-tnd listed,
which matched the key word 'word'

-- tietp texts --
** Go balk to the previous help menu (root)
*" grep/egrep/fgrep: Search fop" a pattern in a file.
** egr'up: Fast search for a pattern in a file
** fgtep: Fast search for" a stririg (word) in a file
** we: Display the number of lines, words, and characters in a tile,

-- Help fllerltJS --

Press "?' for conte×t-dependent help_ DEL to exit. Press HERE for basic help.

ACRONYM responds quickly to all help requests. In this case, the key word "word" is ambiguous,

in that it matches several help topics. ACRONYM notes the ambiguity in the top window, and

provides a menu of choices in the middle window. The user points at the "grep" menu item with a

mouse to find out more about the grep family of commands. Note that the word "help" which the

user had typed in the third (commands)window has been erased automatically by ACRONYM.



WI IAT ACRONYM I.OOKI(I) l,lKli TO T! IE USI!R 193

_r'ep: Se;lrch for a pattern in a file.

Format: gr'ep [eptic_ns] pattern [file-list]
Options: --c (count) display number of lines only
-e (expr'esslt;n) pattern can begin with hyphen
-1 (list) display f_lenames only
-n (number) display line numbers
-s (status) return exit status only
-v (rew;r's_) reverse sense of test
-i (i9nore case) consider tipper and lower case equivalent
Arguments: pattern : a regular expre_;sion, can be a simple string

-- Help t_xts --
• * Go back to the previous help menu (word)
• * Summary of the gr'ep command
• * Optlous foc the grel; command

• * A('glii,Iorltsfor the 9rep command
• ' Ad_11tional notes ell the gr'ep crJmmand

• * _xamples of the grep command
• * What is a file?

• * What is a string?

• * What is a regular expression?

•* egrep: Fast search for" a pattern in a file
•* fgrep: Fast search for a string (word) in a file

-- Help menus --
$

Press '?' for context-dependent help, DEL to exit. Press HERE for basic help.

ACRONYM's response to the selection of the "grep" menu item is to update the screen with help

about the grep utility. The "basic" help, a brief summary of syntax and options, appears in the top

window, while a menu of help messages with further details or dealing with related topics appears in

the middle window. In this hypothetical case, in which the user has never used the grep utility

before, the basic help does not suffice. Here the user points the mouse at the menu item "Summary

of the grep command" for further information.



194 'I"II1! DESIGN AND I!VAi UATION O1: ON-I ,INI! ]ii!l ,P SYS I'I:.MS

gt'ep s_,arcbes one or mol'e files, line hy line. lOl" a pattern, Ihe pattern
carl be a siilipie string, or another forln of a cegular expression, grep takes

various actions, specified by options, each time it finds a line that

contains a match for the pattern.

grep takes its input from files specified on the command line or from the

standard input.

-- Help texts --

** Go back to the prevlous help menu (grep)

** grep/egrep/fgrep: Search for a pattern in a file.
** Options for the grep command

** Arguments for the grep command
** Additi(]nal nctes on the grep command

** txaa_ples of the grep con_and

** What is a string?

-- Help ,menus --
$

Press "?' for context-dependent help=,DEl_ to exit. Press HERE for basic h_lp.

Here we see the summary information on the grep command, obtained by the previous menu

selection of the "Summary of the grep command" menu item. Note that many of the items now in

the menu window were also in the menu in the previous two pictures; the help frames for an

individual command usually all point at each other. In this case, the user is still uncertain and uses

the mouse to select "Examples of the grep command."



Wl IAT ACRON't'M IOOK t:D 11KF.TO TIIF USER 195

lhe iollowing examples assume that the woi'king directory contains 3 files:
"testa", "testb", arid "testc". lhe contents of each file is shown below,

testa testb testc

aaabb aaaaa AAAAA

hbbcc obbbb I_BBBB
ff-ff ccccc CCCCC

cccdd ddddd DDDDD

dddaa

grep can search for" a pattern that is a simple string of characters [he

following command line searches "testa" for the string "bb". grep displays
each line containin U bb.

$ grep bb testa
aaabb

bbbcc

$

The -v option reverses the sense of the test. The example below displays

-- Help te×ts -- PRESS litRE to move forward.
** Go back to the previous help menu (grep-s)

** grep/egrep/fgrep: Search for a pattern in a file.
** Summary of the grep colnmand

** Argtlmt'nts for" the grep command
*" Additlonal notes on the grep command

** Options for the grep command

-- Help menus --
$

Press '?' for context-dependent help DEI to exit, Press HERE for basic help.

Here ACRONYM has updated the screen in response to the user's selection of the "Examples"

menu item. Note that the examples, in this case, do not entirely fit in the "Help texts" window.

Therefore the mode line at the bottom of this window says "Press HERE to move forward." In order

to see more of the examples, the user points at the word HERE with the mouse to scroll the help texts

forward.



196 TIlE I)F.SIGN AND i:.VA! UATION O1: ON-IINE lll';i,t' SYSTEMS

lhe -v option reverses the sense of the test. lhe example below displays
a 1 the lilies WITHOUT bb.

$ grep -v bb testa
ff -ff
cccdd

dddaa

$

lhe -n flag displays the line number of each displayed line.

grep -n bb testa
I :aaabb

2 :bbbcc

$

grep can search through more than one file. Below, grep searches through
each file in the working directory. (The ambiguous file reference * matches

all filunames.) The name of the file containing the string precedes each

PI_}SS HIRE to move backward. -- Help texts -- PRESS HERE to move forward.

• * Go back to the previous help menu {root)

• , grep/egrcp/fgrep: Search for a pattern in a file.

• * Summary of the grep command

• * Arguments for the g('ep command
• * Additioaal notes on the grep command

• * Options for the grep command

-- Help menus --

$

Press '?' for context-dependent helpT ()EL to exit. Press HERE for basic help._

Here the top window has been scrolled forward to show more of the examples. Note that the mode

line for that window now offers the user the chance to scroll it either forward, to see still more of the

examples, or backward, to see what he had been looking at previously (the beginning of the

examples). In this case, the user has at last decided that he understands enough to try actually using

the grep command.



{ , - 197Wl IAT ACRONYM I )OKI.D I]KI! 1O TIIF. USER

greI): Search for a pattern in a file.
_,)rmat: grcp [options] pattern [filc,-list]

()pt';ons: -c {coLJnt) dispiay number of lines only

-e (explession) pattern can begin with hyphen

-I (list) display filenames only
-n (iltlmber) display line numbers

-s (status) returH exit stattms only

-v (reverse) reverse sense of test

-i (ignore case) consider upper and lower case equivalent

Arguments: pattern : a regular expression, can be a simple string

-- Help texts --

** Summary of the grep corgi,and

** Options for" the grep corm.and
** Arguments for the grep command
"" Additional notes on the grep command
** fxamples of the grep cormnand
*" What is a file?

** What is a string?
** What is a regular expression?
** egrep: Fast search for a pattern in a file
** fgrep: Fast search for a string (word) in a file

-- Help menus --

$ grep

Press "?' for context-dependent help_ DEL to exit. Press HERE for basic help.

Here the user has bravely typed "grep" and pressed the SPACE bar. Although the user has not yet

typed a complete command, ACRONYM knows that spaces delimit the various parts of UNIX

commands. It therefore parses (interprets) the partial command line -- in this case, simply "grep" --

and updates its help accordingly. In this case, that update yields simply the original basic help

regarding the "grep" command.



198 "FiIE DESIGN AN [') I,.\AL,L,A1ION O1:ON-I.IN|! l IFJ ,P SYSTEMS

YoU may now type one ,Ji m,)r_ file i_emes in wi_ich to search. If you don't
type any file names, tho :_tandaro i_iput will he, ._earchod. When you have
typed all the file na,,les _;)u want t,; search, pre':s the REIURN key.

** YOU may type any -- Hel l) texts --tile name now, _ncluding any of the following:

I filel file2

I file3 ' filedummy
I'* .qrep/egrep/fgrep: Search for a pattern in a file.
** Summary o,* the 9rcp command

'* Options for the grep command

** Arguments for the grep conmland
** Additional notes on the grep command

** Examples of the grep command
** What is a file?

"* What is a string?
** What is a regular expression?

** What the RETURN key is and what it means

-- Help menus -- PRESS HERE to move forward.

$ grep chocolate file?

Press "?' for context-dependent help_ DEI. to exit. Press HERE for basic help.

Here the user has typed more of the grep command. He has typed "chocolate", the word he is

looking for, and has begun to type the name of a file. After typing the first four letters, "file", he

typed a question mark. ACRONYM then updated the screen as shown above, with a list of possible

completions of the file name included in the menu window. After this happens, the question mark is

automatically erased by ACRONYM.



Wl IAT ACRONYM I.OOKI'])I.IKI{ '10 Flit" USF.R 199

Yell n|_]y now type o_e or" more t i 1(2 flalllf_S in which to SO;lI'ch. If you dotl't
ty;,e any fil.:: name.s, the _taudard irlpllt will be searched. Whel) you have

typed all th_ fiie names you want to search, press the R_IURN Key.

-- llelp texts ---
*" You may now type the name of any existing file,

** grep/egrep/fgrel): Search for a pattern in a file.
** Suminar'y of the grep command

** Options for the grep command

*_ Argume_t.s for the grep command
** Additional notes on the grep command

** Fxamples of the grep command
** What is a file?

** What is a string?

** Wilat is a regular expression?
** What the REIURN key is and what it means

_jrep chocolate file] -- Help men_s --

i(l,,chocolate is good

A_}(Ichocolate is bad.
IBut _'he it comes to chocolate

| "[_I a chocolate ca(i,
$

Press "?" for context-dependent help, DEL to exit. Press HERE for basic help.

Here we see the completed result of the grep command. The user completed the file name as

"filel", and pressed RE'IURN. ACRONYM then passed the completed command line on to the

UNIX shell, which e×ecuted the command "grep chocolate filel". The four lines in that file which

contained the word "chocolate" were then printed.



200 TIIF.I)I!SIGNANI)I!VAI.UATION O1:ON-IJNI!III!IP SYSTI:MS

Welcome to ACRONYM, If you don't want to be here, press I)_I to exit,

In addition to normai type#rite_-style keys. your computer has a pointing
device kno_vn a5 a "nlouse." You can move this device around, causing tile arrow

:on your screen to n_ove aroLind and point at different parts of the screen.
fin this system, you can us,.' the mouse 1.o {jet help in several ways.

[o begin with. you will notice that the highlighted line underneath the text.
you are now reading says "PRtSS HI, RE to move fcJvward." If you use the
mouse to point the arrow at the wocd "HfR_". and then press any button on
the mouse, you will find that the text in this window is scrolled forward --

that. is, the beginning of the text will disappear, and new text will appear
at the end of tile window. Ivy it and see,

if yeu can't seem to got the window to scroll forward, tills probably means
that you are polnting the arrow a little too high. Note that it is the

arrow head. not its body, thai. should be pointing at the word "HERE".

In {jeneral. whenever this window or" the one below it has more text than is

- Hell) texts -- PRESS lffRi to move forward,
** llo_'to use tile ACR(INYM help system

*" _t.: Execute a Shell script at a specified time

** bh: print notices frum ilulletin board(s)
** bilE: bc notif_..,d if mail arrives and who it is from

'* (al : display calendar
*" ca lendar: rerninder ca lendar

** _,]t.:display a text file

"* cc: C compiler
** coat: Print compressed files in uncompressed format

** cd or chdiI': Change to another working directory

** chruod: Change the access mode of a file
** that: Cu,mlunicate with (log in to) another machine on the Ether'net
** ok: check if new mail has arrived

** crop: Compale two files to see if' they differ

** cmuftp: Iransfer files to and from other machines on the [thernet
** col: filter reverse line feeds

** comm: Compare two files and print matching and non-matching lines

** compact: compress files to save space

** cp: Copy file
.* cz: convert files to press format and print them on the Dover

-- Help nlenus -- PRESS HERE to move forward.

$ grep chocolate filel
Oh (U,:_colat," is good
AF_G _hocola_.e is bad.
fiut wher; it _:_:r!cs to thor>late

m a chocolate cad.

Press '? foe context-dependent h_Ip: I)EL to exit, Press IIERE for" baslc help,

After completing a command, ACRONYM generally leaves the help message from that command

showing on the screen, as the previous page showed. This is useful when commands are not quite

right: often the corrective infimnation is already showing on the screen. However, this means that

users must explicitly request a return to ACRONYM's basic help menu. Here, that basic menu has

been obtained by typing a question mark before any new command had been typed. It can also be

obtained by pointing with the mouse at the "I-tFIRE" in "Press HERE for basic help" at the bottom of

the screen.



WIIATACRONYMi OOKI:I) I.IKI: 10 Till: USER 201

Welc_._llle to A!;oONYM If }'(ill fl'lll't utahl, tO I)e h,jl:;, plOSS IIEI tu exit..

In addition to normal typewriter-style keys, your computer has a pointing
device known as a "lllOUse." You can Move this device al'ound, causing the arrow

on yotlr screen to move around and l)o'nt at different part,';of the screen.
In this systeni, you can use the mJuse to get hull) in several ways.

1o l_egin with. you will notice that the highlighted l_ne underneath the text
you are now readinq says "PRESS HIR_ to move forward," If you use the

mouse to point, the'arrow at the word "H_RE", and then press any button on
the mouse. "you wil} find that tiae te×t in this window is scrol ted forward --

that is. the beginning of the text will disappear and Flew text will appear

at the end of the window. Iry it and see.

If yell can't seem to get the window to scroll forward, this probab1.y nleans

that yell are point_ng the arrow a little too high Note that it is the
irrew head. not its body. that should he pointing at the word "HERE".

n general, w!lenev,;r this window or the one below it l,as more text than is

-- th. lp texts -- PH_L;S lffRl to niove forward.

_* l,nw to use the ACRONfN hal) _ystelll
at,: _xecLlte a Shel I script ,at a specified time

** bh: print notices froni l)tlll,;tii_boartl(s)
.w l,iff: be notified if inai] arrives and who it is from

** ca_: disl) lay calendar
** calendar: reminder calendar

"* cat: display a text file

** co: C compiler

** coat: Print compressed files in uncompressed format

** cd or choir: Chanoe to another working directory
** clunod: Change the access nlode of a file

** chat: Communicate with (log in to) another machine on the Ethernet
** ck : (;hock if new n|ai J has arrived
** crop: Compare tw(; files te see if they differ

** cnluftp: Iransfer files to and froln other machines on the _thernet
** col: filter rewarse line feeds

** room: Compare two files a,d print matching arid non-nlatching lines
** compact; compress files to save space

** cp: Copy file
** cz: convert files to press format and print them on the Dover

-- Help. menus -- PRESS H_R[ to nic}ve forward.

$ ,:yep chocolate f_lel

I()i_chocolate _s good
And chocolate is bad.

l_ut when it, (_)mos to chocolate
'in a chocolate cad,

he Ip

Pro__s_ss'?' for contex__t,-deQendent help D}L to exit, Fress HERE for basic help.,....
IVI,e a key word for whicil you want hell): messages

For a second example, imagine a user trying to learn how to send electronic mail. Beginning with a

key word request, the user types "help" and then, when asked for a key word, types "messages".



202 Ti 11" I)I!SIG N AND I'NAi .UAflON O1: ON-I ,IN! + 111,I,I> SYSll:MS

.%elect th(_ aI)Ofoi)I'Iilt(_III(_IILIit(!iIi[i] fi!q_iOilt a()oLit til_ Comlnand ] ist0d,

which nlat.ctn:d lhe k.e-I word "messages'

-- Hel l) texts --
** Go back to tile previous help menu (root)
** bh: print notices from bulletin board(s)
*" echo: D_splay a message

** mesg: l!r_ableldisable recel)tion of messages
i** msgs: System messages and jl,nk mail program,
** post: Post, notice on l)ulletin board(s)
** rsend: send a message to any user on any UNIX machine on the network
** send: Send a message to another user
** wall: Write to all users

-- Help menus --
$ grep chocolate filel
Oh chocolate is goocl
And cFocolate is bad.

But when it coracs to ctmcolato
'hi a chocolate cad,

$

P[ess '?' for context-,,dependent help, DEI to exit. Press HERE for basic help. __

In responses to the request for help on the key word "messages", ACRONYM updates the display

as shown above. Now, imagine that the user incorrectly decides that the "send" command is what he

wants, and begins typing such a command.



WIIAT ACRONYM 1.OOKI'i) IJKI! T()T! Ii- USI::R 203

orm:_t.: send _';e_;t_;,stiont_serF_Oht,st][tly-r, ame] [-all] [message]

Argum_mts: destirlation-user : put'son you want to send a message to.
try name : use tu ;esolve ambiguity it the destination-user is
logged on more than once.
-all] : send to all of the user's t_.,rminals.
imessage] : send a one-line message to the user.

-- Hel l) te_ts --
* SunmJary (if the send command
* Arguments for the send command
* Additional notes on the send command
* Examples of the send command
* talk: Initiate a conversation _ith another user

* reply: Join in to a eorlversation with another user
* write: Send a message to another user
* rsend: send a message to any user on any UNIX machine on the network
* mesg: Enable/disable reception of messages

-- Help menus --
$ grel) chocolate f11el
Oh chocolate is good
And <hoco]ate is bad.
But :_hor'_it com_,s t.o chocolate

'_11 a chocolate cad.
$ send hel I)

Press '?' for context-dependent help. DE1 to exit. Press HERE for basic help. ......
lype a key word for which you want help: mail

Here the user has typed "send" and pressed SPACE, and ACRONYM has updated its help to the

basic help for the send utility. From this help, the user can tell he's got the wrong command, and he

tries another key word help request, this time using the key word "mail".



204 TIII{I)I:SIGN A NI) I(VAIUA'IION O]: ON-I.INI!III:.I.PSYSTI:MS

,%eIcct the al)l)_ol}riatL_ qleriiiitoiIIto fiild eli( _iIIoIJtthe coiiiIii_ii1d]isted,
whic:h nlat,ched i.he key ward 'lllail'

-- Help texts --
** Go back to the previo_ks help menu (send)
*_ mail: Send or receive mail

** bill: be notifl(;d if laail arrives and who it is from

** ok: check if nc.w mail has arrived

"° hg: Mer'cilry mail reading program
*" mailq: l:xamine ov delete entcies ip the net_voi'k mail queue

** msgs: System messages and junk mail program

-- Help menus --

$ 9_-ep chocolate file]
Oh chocolate is good
And chocolate is bad.
But wh(:,r}it comes to chocolate

] "hi a chocolate cad.
$

iPr'e,ss ?' for context-descendent hell)_ DEI to exit. Press HERE for basic help. ,,.

Here the user has gotten help on the key word mail, and the menu makes it fairly obvious that what

he wants is the "mail" command. Note that he must himself explicitly erase the erroneous "send"

command he had already typed; in this picture, he has already done so.



Wl IAT A('RONYM IOOKFD 1JKI". 1O Till" USFR 205

|ai I : ._ehd or ,c.L:c'ive mai I
_OrIDilt-I : l_.lai i l_ser- I ist

tormat-_': mail [options]
lhe first format sends mail to the user-list. Iho second format displays
mail that you have received and prompts you with a ? following each letter.
Responses to ?
? hell)
d delete mail

q quit
w write to mbox
w file write to named file

RFIURN proceed to next letter
p rudisplay previous letter
Options:

p display ma_l. no questions
q quit on interrupt
r reverse order

-- Help texts --
** Summ,_:'y of the mail command
** Options for the mail command
** Arguments for the mail command
** Responses to the '?' prompt in the mail utility
** [xamples of" the mai 1 command
"" ck : check if new mai I has arrived

** hill: be notified if mail arrives and who it is from

"* post: Post notice on bulletin board(s)
*_ sen(t: Send a message to another user
** rsend: send a message to any user on any UNIX machine on the network

-- Hel l) menus --
$-grep chocolate file]

0!I chocolate is good
Arid chocol;_te is bad.

But wren it comes to chocolate

l'm a chocolate cad.

$ mail

Press "?" for context-dependent helpl D_I to exit. Press HERE for basic help:

Here the user has typed "mail", as the first part of his mail command, and ACRONYM has

updated the help windows accordingly. Not sure what to do next, the user selects (with the mouse)

the menu item entitled "Examples of the mail command".



206 1"1!1':I)i!SIGNANI)I!VA1UATIONO1:ON-IJNI,;111!1P SYSTFMS

lhe first es,a!tlple bel+.lw _huws t, ow to send a luussage to several users In
this case. nlall sends the' niossagc' to LJSCf S with the Iogin names of his,
alex. and jenny,

$ mail hls alex Jenny
( hies sadie )
(message)

You can also compose a message in a file and then send it by redirecting the
input to mail. lhe command below sends the file today to barbara.

$ mail barbara < today

-- Help texts --
** Go back to tr, e previous help menu (ml)
** mail: Send or receive mail

** Sumnlary of the mail command
"* Argunlent:> For the ma i I com,lland
** Responses to the '?' pronlpt in the mail utllity
*" Options for the mail command

-- Hel l) menus --
$ grep chocolate fil_]
Oh cho(:olate is good
A(Id (hocolate is bail.
t_,ut _eh,;n it crones to chocolate

illa choco iate cad.

$ ma_ i n?

Press ?' fol context-dei_gndent ..._j.elp;DIE to exit. Press HERE for basic help. .._

This picture shows the screen after ACRONYM has responded to the previous request for

"Examples of the mail command." From the example, the user can tell that what he needs to do is to

type the name of the recipient of the mail. He then types "n", the first letter of the name of the

person to whom he is sending mail, but then is unsure about the name's spelling. By typing a

question mark, he requests further help, including possible completions of the word he is currently

typing.



Wl IAT A('RONYM I,OOK 1.1) l,I K !:. l'() TI I!! IJSI:,R 207

korm;_t-l: m,_ t=sev-list

F_rmat-? : mai 1 [options]

lhe far'st format sends mail to the us(,r-]ist, lhe second format displays

mail that you have received and prompts you with a ? following each letter.

Responses to ?
? help
d delete mail

q quit
w write to mbox
w tile write to named file

RI IURN proceed to next letter
p redisplay previl)us letter"

0 I)t ion s :
-I) display mail, ,1o questions
-q quit on iiiterrtlpt
-v rew._r'se order

-- Hull! lexts --
** _ou nli;y type _tlly vall(] Use[' fianlo now. illcIuding ally of these:

l_etwor k nsb nichol s naf

** SuIllnlar y of the3 irla i ] command
** Argum(:nts for' the mai I command
*_ Responses to the '?' prompt in the mail utility
** }xamples of the nai ! c_)mmand
"* Lk' check if new mail has arrived
** Diff: be notified if mail arrives arid WhO it is from

"* post: Post. notice cn bulletin board(s)
** send: Send a message to another user
** rsend: send a message to any user on any UNIX machine on the network

-- Help met, us --
$ grop chocolate filel
Oh chocolate is good
A,n chocolate is bad.
l;tJt when it comes t,.)chocolate

I m a chocolate cad.
$ mail nsl_

Subject: This is my mail
kflter your mail, ternlinated by Cont,ol-D
It is very short. I am only playing.
_O (EOT)
[mail sent to nsb]
$ m?

Press "?" for context-dependent hel[)_ [)EL to exit. Press HIRE for basic help., ........

In this picture, we see the final help screen from the mail command. The menu window includes a

list of valid mail recipients that start with "n", in response to the user's typing a question mark after

only typing "n" for a user name. Once he had the spelling right, the user completed the interaction

with the mail command in the usual way, with the results shown here.

Now, just for fun, the user types only an "m" on a command line and then types a question mark.



208 TilF, I)I:SIGN AND I!VA! LIATION O1. ()N-I .INIi II1:I P SYSTt!MS

Welcome t.ti A(;qONYI4, If you don't waist I(_ be I!, kc, press b}l to exit.

In addition to normal typewriter-style keys, your computer has a pointing
device known as a "mouse." You can move this device al-oul_(], causing the arrow

on yotJr screen to move around and point at different parts of the screen.
n this system, you can use the ,,o_,se to get help in several ways,

o beg_n with. you will notice that the highlighted line underneath the text

you are now reading says "PRESS IiERF to move forward," If you use the
mouse to point the arrow at, the word "HERE". and then press any button on

the mouse, you will find that the text in this window is scrolled forward --

that is. the beginning of the text will disappear, and new text will appear
at the end of' the window, fry it and see.

f you can't seem to get the window to scroll forward, this probably means
that, you are pointing the arrow a little too high. Note that it is the

arrow head, not its body. that should be pointing at the word "HERL",

In .oene!aI. whenever this window or the une below it has more text than is

-- Ite lp texts -" PRESS IIERL to move forward.
** How tu use the ACRONYM help system
** mail: S(tnd or receive mail

"* real}q- _xamine or de1_te entries in the network mail queue

*° mcsg: Inab!c_,"disable reception of messages

*" msgr,: System iTle,._sai]es and junk mail program
** mkd3r: Make a dir'ector_
** more: Display a file, one screenflJl at a time.
** nlv: Rename a file

i -- Help,,

_en9S ,-
$ grcp chocolate fiiel
01 cni)colate is goo(J
And chocolate is b_i(:

l_(Pt,when it comes to chocolate

",1_ a chocolate cad.
Smai I nsb
S_]bject: Ehis is my mail
Enter your mail, terminated by Control-D
It is very short. I am only playing.
*D (cOt)
mail sent to nsb]

$ III

Press "?' for context-doper, dent help_ DFI to exit. Press HFRE for basic hell). ......

Here, in response to an "m" followed by a question mark, ACRONYM has retained the standard

help text, but has updated it menu to eliminate those commands which do not start with "m".



{.... 209Wi IA'I A..R()N)[ M I OOKI,21)I,IKI_ "lO TI if! USER

Welc{_.le to ACR{lf_YI_. l_ you ,.iorL't w&_,_t t(} t}e her_. pt'ess I}fl. to exit.

In addition to norlI1_lltypewriter-style keys, your computer has a pointing
device known as a "_iou,_e." You can move this device around, causing the arrow

on your screen to movo ai'outid and point at different parts of the screen.
In this system, you carl iise the mouse to get. help in several ways.

lo begin with, you will notice that the highlighted llne underneath the text

you ,_inenow reading says "PRESS HERE to move forward." If you use the
mouse to point the arrow at the word "HERE", and then press any button on

the mouse, you will firld that the text in this window is scrolled forward --

that is, the l}oginning of the text will disappear, and new text will appear
at the end of the window, lry it arid see,

If you can't seem to (jet the window to scroll for'ward, this probably means

that you are pointing the arrow a llttle too high. Note that it is the
arrow head. not its body. that should be pointing at the word "HERE".

_i general, whenever this window oP the one below it has more text than is

....Hulls texts -- PRESS HFHE to move forward.
*_ How to L_so the ACRONYM h_)lp system

*" at: Ex{?cute a Shell script at a specified time

** bb: print notices from bu)letin board(s)
'** hill: he notified if mail arrives and who it is from

** cal: d_splay calendar
** calendar: reminder Ealendar

** cat: display a text file
** co: C compiler"

*" coat: Print compressed files in uncompressed format

*" cd or chdir: Change to another woFking director'y
** chmod: Change the access mode of a file

*" chat: Conlmunicate with (log in to) another machine on the Ethernet
** ck: check if new mail has arrived

"" cnlp: Compare two files to see if they differ

* crnuftp: Iransfer fi los to and from other machines on the Ethernet
* col: filter reverse line feeds

* com(_: Compare two files and print matching and non-matching lines
* compact: compress files to save space

* cp: Copy file
* c7: convert files to press format and print them orl the Dover

-- Help menus -- PRESS HERE to move fo,"ward.

$ grep chocolate i'1lel

Oh chocolate is good
Arid choco!ate is bad.
gvt v:her, "it conies t,_ chocolate

I'm a chocolate cad.

$ mail nsh

StJb]ect: lhis is my mail

Er_ter your mail, terminated by Contr'o]-D

It is very short. I am only playing
^D (EOT)

[mail sent to nsb]

Press "?' for context-dependent hell)' DEI_ to exit,. Press HERE for basic help.

Here the user has erased the "m" he typed, and returned to ACRONYM's basic help. Though

somewhat artificial, the examples in this chapter have at least demonstrated the important

mechansisms ACRONYM uses to provide help to its users, t'urther information, including a

videotape of the s_stem in use, is available from the author.



210 '11!1:I)IiSIG N ANI) I!\"AI L_ATION OI ON-i .INI.I I11-IP SYSI'iiMS



TI1I-IMPi_FMI-NTATIONOFACRONYM 211

Appendix C

The Implementation of ACRONYM

In this appendix, a few raw files from ACRONYM's database are presented in order to convey the

flavor of tlge implementation. That flavor, incidentally, is not terribly tasty" ACRONYM was

designed and implemented in a hurry, with reliability and su'uctural integrity entirely ignored when I

thought I could save myself a few hours. It is straightforward to see that a more "correct"

implementation could produce equal or better results.

ACRONYM's view of the world is that it is a great big network of information. That network has a

starting node, called the root, and two distinct types of links between nodes. Those links may oe

referred to as syntactic and semantic links.

A syntactic link specifies a transition in the current world-state which is made on the basis of a

partial command from the user. Thus, for example, when the user types "Is" from the root state, a

transition is made to the state corresponding to a partial "Is" command. Naturally, the help provided

in this state is specific help for the ls utility.

A semantic link specifies a topical connection between two information nodes. Thus, if the user is

currently in the "del" state, a semantic link to the "lsd" command ensures that one item in the help

menu will be a pointer to the "lsd'" command. However, there is nothing that the user can type in the

current statc that will move him directly into the "lsd" state. (Of course, he can erase the "del"

command and type "lsd", but these are two separate operations.)

In ACRONYM, nodes can be linked either just semantically, just syntactically, or both. The

connections are specified in a clumsy but workable language designed for the purpose.

Fach node in the network must be given a unique name by the database designer. That name, for

reasons related to UNIX file naming conventions, can be at most nine letters long. For each node,

the database designer has to crate two files, the "help" and "hcom" filcs.



212 IIIF i)I!SIGN ANI) I:,VAI.tJAT1ON O1: ON-I INF_ I IFIP SYSTI".MS

"l'he "help" file is just a file in the database directory, n_mled by the node name followed by

".laclp", which contains the help text exactly as it will appear in the help text window. The ".hcom"

file, named by the node name followed by ".hcom", contains a description of links to and from the

node.

When the ACRONYM database is compiled, ACRONYM reads in all of the hcom files and then

produces, for each node, a third file called the "hmcn" file. This file, which is named by the node

name followed by ".hmen", is the menu of related topics which will be shown to the user when he is

seeing the associated ".help'" file. 'l'hc file also contains some pointer information which will be

hidden from the user. In general, ACRONYM menus come from these pre-compiled hmen files,

althot_gh in certain circumstances (those involving dynamic operations such as file name or user

name completion), ACRONYM will construct such menus "on the fly".

The language which is used in the hcom files to specify the structure of the database is simple but

ugly. The hcom file consists of two parts: the first line is the key line, a short description of the node

which will be used in the construction of menus which point to that node. This first line might best

be thought of as a "long name" for the node, where the actual node name is limited to nine characters

because of the file naming conventions.

After that first line, the remainder of an hcom file consists simply of a series of paired words

specifying links. In each pair of words, the first word specifies the nature of the link, while the

second word specifies the node being linked to. By default, all links are both semantic and syntactic,

with the first word interpreted as a description of what the user has to type to make a syntactic

transition. Thus, the line which appears in the root hcom file ("root.hcom"), "grep grep" specifies

that if, in the root state, a user types "grep", then ACRONYM's world state should be changed to the

"grep" node. It also specifics that the root menu includes an entry for grep (this is the semantic link).

In a first version of ACRONYM, the syntactic links could be specified with arbitrary regular

expressions: hence a line in an hcom file of the form "xy.* foo" would allow _ syntactic transition to

node "foo" if the user typed any word beginning with "xy". This mechanism proved unnecessary,

and was removed for efficiency considerations. In its place, however, a few special links were created.

If the link is specified as "_i!file", then the transition is made when any file name is typed. Similarly,

"'@user" allows transitions when user names are typed, "@dir" allows transitions when directory

names are typed, and "(_!filewrite" allows transitions when any potentially valid (writable) file names

arc typed. Finally, to facilitate a few special cases of the UNIX command language without regular



'flll! IMI_II!MI!N1A'I'ION 01: ACRONYM 213

expression parsing, "_!!opt" matches any string ,_tarting with a dash C-"), and "@any" matches any

single word.

All of these mechanisms by default create both syntactic and semantic links: the syntactic links

permit state transitions in the parsing process, while the semantic links mandate menu entries.

Syntactic-only links are created by preceding the name of the node being linked to with an "@'7 sign.

Thus an hcom line like "@file @fop" specifies a syntactic link to node "fop" whenever a file name is

typed, but does not create an_ entries in the associated help menu.

Semantic only forward links are created via the "@link" link specification. Thus a line in an hcom

file of the form "@link fop" creates a menu link to node fop, but does not permit any state transitions

during parsing. This is used for concept-related links, as in "examples", "summary", related

commands, and so on.

For convenience, the semantic links can be specified in either direction. Thus, if the file

"foo.hcom" contains the line "@link bar", this creates a menu item in foo's help menu which refers

to the node "bar". However, the "@key" link mechanism can be used to specify links in the other

direction: a line in _'fi)o.hcom'" that says "@key bar" creates a link from bar's help menu to the node

fop. (The wold "key" here is i_tended to suggest key words: in this example, we are saying in effect

that bar is a key word for fop, so that people seeing help for bar should also be pointed at fop.)

Such are the mechanisms involved in ACRONYM's database. The deeply interested reader will

find, in the rest of this appendix, all of the help, hcom, and hmen files that were used in the examples

shown in Appendix B. By consulting these file listings while reading that appendix, it should be

possible to obtain a clearer picture of what ACRONYM was actually doing in the examples presented

there.

It will be helpful, in reading the hmen files, to note that the first 17characters of each line of the

hmen file is hidden from the user's view when ACRONYM is in use. (Actually, only 14 characters

are hidden in the function key version, but 17 are hidden in the mouse version, which is what

Appendix B simulates.) The first 14 characters specify the name of the node to which the menu

refers, while the next three characters offer a function key to be used to select that menu item, for

versions of ACRONYM which use function keys.

One final note about ACRONYM worth knowing is that an alias mechanism is provided to

facilitate processing of key word synonyms and of key words longer than the nine letter maximum



214 TI 1t! D1-SIG N ANi) F.VAI ,U,VIION O1: ON-I/Nl: i lEI P SYSTi!MS

length for node names. A file named "AIJASES'" provides a set o1"aliases, such as "privileges prot'"

to indicate that a key word request for "privileges" will point to the node named "prot". In the

examples given here, the only time this mechanism is used is for the key word "messages". This is

aliased to the key word "message" in the ALIAS file. Thus, the relevant file names are names such as

"message.hcom" instead of"messages.hcom".

The files are lismd in alphabetical order. All files used in die examples in Appendix B are included,

and no others. Of course, other hcom files were used in the compilation process that produced the

hmen files, using die @key mechanism. However, no other hmen or help files were used.

grep.hcom

grep/egrep/fgrep: Search for a pattern in a file.
@opt grep
@any @grep-t
@Link grep-s
@Link grep-o
@Link grep-a
@Link grep-n
@Link grep-e
@key search
@key pattern
@key string
@key file
@link file

@key find
@Key word
@Link string
@Link regex
@link egrep
@link fgrep

grep.help

grep: Search for a pattern in a file.
Format: grep [options] pattern [file-list]
Options: -c (count) display number of lines only

-e (expression) pattern can begin with hyphen

-I (list) display filenames only
-n (number) display line numbers
-s (status) return exit status only
-v (reverse) reverse sense of test
-i (ignore case) consider upper and lower case equivalent

Arguments: pattern : a regular expression, can be a simple string

grep.hmen

grep-s f2 ** Summary of the grep command

grep-o f3 ** Options for the grep command

grep-a f4 ** Arguments for the grep command

grep-n f5 ** Additional notes on the grep command

grep-e f6 ** Examples of the grep command
file f7 ** What is a file?

string f8 ** What is a string?

regex f9 ** What is a regular expression?

egrep fl ** egrep: Fast search for a pattern in a file

fgrep f2 ** fgrep: Fast search for a String (word) in a file



-, _ 2151'111_.IMP! .i:MliNTA I'ION 01: A( RO_ YM

grep-1 .hcom

grep command after pattern is specified
@file grep-1
@l ink grep
@I_ink grep-s
@Link grep-o
@Link grep-a
@Link grep-n
@Link grep-e
@link file

@I_ink string
@Link regex
@Link return

grep-l.help

You may now type one or more file names in which to search. If you don't
type any file names, the standard input will be searched. When you have
typed all the file names you want to search, press the RETURN key.

grep-1 .hmen
file f2 ** You may now type the name of any existing file.

grep f3 ** grep/egrep/fgrep: Search for a pattern in a file.

grep-s f4 ** Summary of the grep command
grep-o f5 ** Options for the grep command

grep-a f6 ** Arguments for the grep command

grep-n f7 ** Additional notes on the grep command

grep-e f8 ** Examples of the grep command
file f9 ** What is a file?

string fl ** What is a string?

regex f2 ** What is a regular expression?
return f3 ** What the RE[URN key is and what it means

grep-e.hcom

Examples of the grep command

@Link grep
@Link grep-s

@Link grep-a

@Link grep-n

@Link grep-o



216 TIII!I)I'.glG:,_h_I)!!VAILL;\IIONOI:ONIINI_III!I.I_SYSTI!MS

grep-e.help

]he Following examples assume that the working directory contains 3 files:
"testa", "testb", and "testc". Ihe cor_tents of each file is sliown below.

testa testb testc

aaabb aaaaa AAAAA

bbbcc bbbbb BBBBB

ff-ff ccccc CCCCC

cccdd ddddd DDDDD

dddaa

grep can search for a pattern that is a simple string of characters. The
following command line searches "testa" for the string "bb". grep displays

each line containing bb.

$ grep bb testa
aaabb

bbbcc

$

The -v option reverses the sense of the test. the example below displays
all the lines WITHOUT bb.

$ grep -v bb testa
ff-ff

cccdd
dddaa

$

The -n flag displays the line number of each displayed line.

$ grep -n bb testa
1:aaabb

2:bbbcc

$

grep can search through more than one file. Below, grep searches through
each file in the working directory. (The ambiguous file reference * matches

all filenames.) The name of the file containing the string precedes each

line of output.

$ grep bb *
testa:aaabb

testa:bbbcc

testb:bbbbb

$

The search that grep performs is case-sensitive. Because the previous
examples specified lowercase bb, grep did not find the uppercase string,

BBBBB, in testc. The -i option causes uppercase and lowercase letters

to be regarded as equivalent.

$ grep -i bb *
testa:aaabb

testa:bbbcc

testb:bbbbb

testc: BBBBB

$

The -c option displays the name of each file, followed by the number of
lines in the file that contain a match.

$ grep -c bb "
testa:2



TI ll.i IM PI .liM FNIAT1ON OF ACRONYM 217

tes tb :1
tes tc :0

$

The -e option searches for a string that begins with a hyphen. This option

causes grep to accept the hyphen as part of the pattern and not as an
indicator that an option follows.

$ grep -e -ff *
testa: ff-ff

$

The following command line displays lines from the file text2 that contain a

string of characters starting with "st", followed by zero or more characters

(.*), and ending in "ing"•

$ grep 'st•*ing" text2
• . .

. . .

$

grep-e.hmen

grep f2 ** grep/egrep/fgrep: Search for a pattern in a file.
grep-s f3 ** Summary of the grep command

grep-a f4 ** Arguments for the grep command

grep-n f5 ** Additional notes on the grep command

grep-o f6 ** Options for the grep command

grep-s.hcom

Summary of the grep command

@Link grep

@Link grep-o
@Link grep-a
@Link grep-n
@Link grep-e
@Link string

grep-s.help

grep searches one or more Files, line by line, for a pattern. The pattern
can be a simple string, or another form of a regular expression, grep takes

various actions, specified by options, each time it finds a line that
contains a match for the pattern•

grep takes its input from files specified on the command line or from the
standard input•

grep-s.hmen

grep f2 ** grep/egrep/fgrep: Search for a pattern in a file.
grep-o f3 ** Options for the grep command

grep-a f4 ** Arguments for the grep command

grep-n f5 ** Additional notes on the grep command

grep-e f6 ** Examples of the grep command

string f7 ** What is a string?



218 Till! I)I{SIGN ANI)liVAl/.!ATION O1: ON-I.INE lllil,l' SYSTi!MS

mail.hcom

Commands relating to the key word 'mail'
@I ink ml
@I ink biff
@I ink ck

@I ink hg
@link mailq
@I ink msgs

mail.help

Select the appropriate menu item to find out about the command listed,
which matched the key word 'mail'

mail.hmen

ml f2 ** mail: Send or receive mail
biff f3 ** biff: be notified if mail arrives and who it is from
ck f4 ** ck: check if new mail has arrived

hg f5 ** hg: Mercury mail reading program
mailq f6 ** mailq: Examine or delete entries in the network mail queue

msgs f7 ** msgs: System messages and junk mail program.

message.hcom

Commands relating to the key word 'messages'
@I ink bb
@I ink echo

@I ink mesg
@I ink msgs
@I ink post
@link rsend
@I ink send
@I ink wal 1

message.help

Select tlle appropriate menu item to find out about the command listed,
which matched the key word 'messages'

message.hmen

bb f2 ** bb: print notices from bulletin board(s)

echo f3 ** echo: Display a message

mesg f4 ** mesg: Enable/disable reception of messages
msgs f5 ** msgs: System messages and junk mail program.

post f6 ** post: Post notice on bulletin board(s)
rsend f7 ** rsend: send a message to any user on any UNIX machine on the network

send f8 ** send: Send a message to another user
wall f9 ** wall: Write to all users

ml-e.hcom

Examples of the mail command
@Link ml

@Link ml-s
@Link unl-a

@Link ml-c

@Link ml-o



Till: IMPl,I_MI,NTAI]ON O1: A(.'I,_ONYM 219

ml-e.help
The first example below shows how to send a message to several users. In

this case, mail sends the message to users with tile login names of hls,

alex, and jenny.

$ mail hls alex jenny

(message)

(message)

You can also compose a message in a file and then send it by redirecting the
-input to mail. Tile command below sends the file today to barbara.

$ mail barbara < today

ml-e.hmen

ml f2 ** mail: Send or receive mail

ml-s f3 ** Summary of the mail command

ml-a f4 ** Arguments for the mail command
ml-c f5 ** Responses to the '?' prompt in the mail utility

ml-o f6 ** Options for the snail command

ml.hcom

mail: Send or receive mail

@link @ml
@user @ml-I
@Link ml-s

@opt ml-o
@Link ml-a
@link ml-c
@Link ml-e

@key mail
@link ck

@Link biff

@link post
@link send
@link rsend

ml.help
mail: Send or" receive mail

Format-l: mail user-list

Format-2: snail [options]

The first format sends mail to the user-list. The second format displays

mail that you have received and prompts you with a ? following each letter.

Responses to ?
? help
d delete mail

q quit
w write to mbox
w file write to named file

RETURN proceed to next letter
p redisplay previous letter

Options:
-p display mail, no questions
-q quit on interrupt
-r reverse order



220 Till:. I)I:,SIG N AND FNAI _UATION OI: O?,_-I .INI:. I I1!I .P SYS'I'FMS

ml.hmen

ml-s f2 ** Summary of the mail command
ml-o f3 ** Options for the mail command
ml-a f4 ** Arguments for the mail command
ml-c f5 ** Responses to the '?' prompt in the mail utility
ml-e f6 ** Examples of the mail command
ck f7 ** ck: check if new mail has arrived
biff f8 ** bill: be notified if mail arrives and who it is from

post f9 ** post: Post notice on bulletin board(s)
send fl ** send: Send a message to another user
rsend f2 ** rsend: send a message to any user on any UNIX machine on the network



'II!F IMI'I I!M i:.N'IAI lON O1: ACRONYM 221

root.hcom

! This is the root file for tile ACRONYM help system, This is where

I'll explain how all such files work.
!

! First of all, each node has three files. The .help file is pure help
! text. The .hcom files, like this, are information used for counpiling

! the current version of the help network used for dynamic help and

! dynamic menu generation. All hcom files must adhere to the same fairly
! stupid syntax, which is explained only here. (lhe third file for each
! node is the .hmen File, whicl} is a menu generated automatically from

t the .hcom file by the ark program, as necessary.)

! This is a comment. Comments must start the line with a bang.

!

! The name "root" is special, ACRONYM knows that "root.hcom" is where

! everything begins. However, the syntax is the same for each node,
! even the root. Any file with an ".hcom" extension in the help directory

! (specified as HELPDIR in ack.ml and ack.c) is considered such a node.
!

! The first non-comment line is crucial: it is the short description of

! the corresponding help node (.help file), and is used for dynamic

!menu generation.
!

! All remaining non-comment lines have two fields, separated by white
! space. Undetermined havoc may result if the line has only one field.

! The first field is the pattern to be matched. If this doesn't start

! with an "@" sign. it is a fixed pattern (word) that must be matched

! exactly. The extras are provided by the following possible magic patterns:
! @any matches anything

! @opt matches anything that starts with a .....
@file pattern must be a file name

! @filewrite patterr_ must be a potential (creatable) file name

! @dir pattern must be a directory name

! @user pattern must be a user" login name
! @link non-syntactic link; used only for menu generation,

! never for command parsing.

! @key The inverse of @link; creates a link to the current
! frame from the one named on the rest of the line.

! This is the mechanism used for specifying key words.

! A frame exists for each key word, from which each
! node declares back-links via @key.
!

! Creating more magic "@" eptions is fairly easy when it becomes necessary,
! but of course that does involve some reprogramming.

! The second field is the node to which a match passes control. It is the
! name to which ".hcom" or ".help" should be appended. The @Link and @key

! patterns give node names which are not used for parsing, only for menu
! traversals. You can do the reverse -- specify a link that is for parsing
! but NOT for menu traversal -- by preceding tl_e node name (the second field)
! with an "@". Thus, if a line says "@opt @foo", then an option typed at that

! point will indeed pass control to node foo: however, there will be no link
! to node foo in the hmen menu.

! WARNING: Patterns other than the special ones that start with "@" are

! case sensitive. That is, a pattern of "Is" won't match "LS". However,
! things that start with "@" are case-insensitive, as are node names.
! (Actually, that's a slight oversimplification: node names are mapped
! entirely to lower case, so that the file names (.hcom, etc.) MUST be
! all lower case. References to node names within hcom files are more
! flexible, in that ACRONYM will assume that you meant to type in all lower
! case for node names.



222 T111! I)I!SIGN AN I) FVA1 .UATION Oi: ON.-1 .INF I11:1P SYSTI!MS

! Remember. the first non-comlnent line is the magic keyline.
!
Introduction and main menu for the ACRONYM help system

@link acronym
at at
bb bb
biff biff
cal cal
calendar cale
cat cat
cc cc
ccat ccat
cd cd
chdir cd
chmod chmod
chat chat
ck ck

cmp cmp
cmuftp cmuftp
col col
comm comm

compact compact
cp cp
cz cz
date dt
dcat dcat
del del
df df
diff diff
du du
echo echo

ecp ecp
egrep grep
expunqe expunge
fgrep grep
file fl
find find

ling ling
finger finger
ftp ftp
grep grep
head head

hg hg
kill kill
In In

Ipq lpq
Ipr Ipr
Iprm Iprm
Is Is
Isd Isd
mai I ml

mailq mailq
mesg mesg
msgs msgs
mkdir mkdir
more more
mv mv
od od

opr opr
passwd passwd

Pj PJ
post post

pr pr

print print

ps ps



TI [1: IMPI ,IiMI!NTATION Ol: ACRONYM 223

pwd pwd
reply reply
rev rev
rm rm
rmdir rmdir
rsend rsend
see see
send send

sleep sleep
sort sort

spell spell
strings strngs
stty stty
tail tail
lelnet telnet
talk talk
time time
touch touch
tset tset

tty tty

ttyinfo ttyinfo
ttyis ttyis
uncompact uncom
undel undel

uniq uniq
uptime uptime
users users
u users
utime utime

ww

wall wall
wc wc

whenis whenis

who who
whoami whoami
write write



224 Fl lli I)I:S[GN ANI) I!VAi ,U,,\TION O1: ON-I .INI! lll:J P SYS'II-MS

root.hmen

acronym f2 ** How to use tile ACRONYM help system
at f3 ** at: Execute a Shell script at a specified time
bb f4 "* bb: print notices from bulletin board(s)
biff f5 ** biff: be notified if mail arrives and who it is from

cal f6 ** cal: display calendar
cale f7 ** calendar: reminder calendar
cat f8 ** cat: display a text file
cc f9 ** cc: C compiler
coat fl ** ccat: Print compressed files in uncompressed format
cd f2 ** cd or chdir: Change to another working directory
chmod f3 ** chmod: Change the access mode of a file
chat f4 ** chat: Communicate with (log in to) another machine on the Ethernet
ck f5 ** ck: check if new mail has arrived

cmp f6 ** cmp: Compare two files to see if they differ
cmuftp f7 ** cmuftp: Fransfer files to and from other machines on the Ethernet
col f8 ** col: filter reverse line feeds

comm f9 ** comm: Compare two files and print matching and non-matching lines
compact fl ** compact: compress files to save space
cp f2 ** cp: Copy file
cz f3 ** cz: convert files to press format and print them on the Dover
dt f4 ** date: print today's date and time (and set it if you're the superuser)
dcat f5 ** dcat: convert troff output to press format for printing on Dover
del f6 ** del: Delete a file reversibly
df f7 ** dr: Report on free disk space
diff f8 ** diff: Display the differences between two files in editing-oriented format
du f9 ** du: Summarize disk usage
echo fl ** echo: Display a message
ecp f2 ** ecp: Ethernet file copy
grep f3 ** grep/egrep/fgrep: Search for a pattern in a file.
expunge f4 ** expunge: Permanently get rid of deleted files
fl f5 ** file: Display file classification
find f6 ** find: Find files.

fing f7 ** fing: FFont end fOF finger

finger f8 ** finger: User information lookup program
ftp f9 ** ftp: Transfer fi!es to and from other machines on the Internet (ARPAnet)
head fl ** head: Give first few lines of a file

hg f2 ** hg: Mercury mail reading program
kill f3 ** kill: Terminate a process
In f4 ** In: Make a link to a file

Ipq f5 ** Ipq: Display line printer queue
Ipr f6 ** Ipr: Print a file on the line printer

Iprm f7 ** Iprm: Remove an entry from the line printer queue.
Is f8 ** Is: Display information about a file

Isd f9 ** Isd: list deleted files
ml fl "* mail: Send or receive mail

mailq f2 ** mailq: Examine or delete entries in the network mail queue

mesg f3 ** mesg: Enable/disable reception of messages
msgs f4 ** msgs: System messages and junk mail program.
mkdir f5 ** mkdir: Make a directory

more f6 "* more: Display a file, one screenful at a time.
mv f7 ** my: Rename a file

od f8 ** od: Dump the contents of a file

opr f9 ** opr: Queue files for Dover or line-printer and/or examine & modify queue

passwd fl ** passwd: Change login password

pj f2 ** pj: print system and user identification

post f3 ** post: Post notice on bulletin board(s)
pr f4 ** pr: Paginate file for printing

print f5 ** Commands relating to the key word 'print'

ps f6 ** ps: Display process status

pwd f7 ** pwd: Print working directory name

reply f8 ** reply: Join in to a conversation with another user
rev fg ** rev: Reverse each line of a file.

rm fl ** rm: Delete a file (remove a link)



,_ , 225ll !I-IMPI ,IiMI!N'IATION O1 A(.I .ON'_ M

rmdir f2 *_ rmdir: Delete a directory

rsend F3 ** rsend: send a message to any user on any UNIX machine on the network
see f4 "* see: See what a file has in it

send f5 ** send: Send a message to another user

sleep f6 ** sleep: Put the current process to sleep
sort f7 ** sort: Sort and/or merge files

spell f8 "* spell: Check a file for spelling errors.

strngs f9 ** strings: Find and display the printable strings in a binary file

stty fl ** stty: Display or' establish terminal parameters
tail f2 ** tail: Display the last part (tail) of a file.
telnet f3 ** telnet: Communicate with (log in to) another machine on the Internet

talk f4 ** talk: Initiate a conversation with another user

time f5 ** tim_: Time a command

touch f6 ** Louch: Update a file's modification time,

tset f7 ** tset: Set terminal modes

tty f8 ** tty: Display the terminal pathname

ttyinfo f9 ** ttyinfo: Find out information about terminals
ttyis fl ** ttyis: Discover where a terminal is

uncom f2 ** uncompact: Restore compressed Files to their original state
undel f3 ** undel: Restore a deleted file

uniq f4 ** uniq: Display lines of a file that are unique

uptime f5 ** uptime: Show how long system has been up
users f6 ** u or users: Compact list of users who are on the system

utime f7 ** utime: Modify the access and/or modified times of a file

w f8 "* w: List who is on the system and what they are doing
wall f9 ** wall: Write to all users

wc fl ** wc: Display the number of lines, words, and characters in a file.
whenis f2 ** whenis: calendar expert program that prints dates and times

who f3 ** who: Display names of users
whoami f4 ** whoami: Print effective current user id.

write f5 ** write: Send a message to another user



226 lllE I)ESIGN ANI)EVAI/3ATION O1: ON-I,INI!. lililP SYS I'I!MS

root.help

Welcome to ACRONYM. If you don't want to be here, press DEL to exit.

In addition to normal typewriter-style keys, your computer has a pointing
device known as a "mouse." You can move this device around, causing the arrow

on your screen to move around and point at different parts of the screen.

In this system, you can use the mouse to get help in several ways.

To begin with, you will notice that the highlighted line underneath the text

you are now reading says "Point IIERE to move forward." If you use the
mouse to point the arrow at the word "HERE", and then press any button on

the mouse, you will find that the text in this window is scrolled forward --

that is, the beginning of the text will disappear, and new text will appear
at the end of the window. Try it and see.

If you can't seem to get the window to scroll forward, this probably means
that you are pointing the arrow a little too high. Note that it is the

arrow head, not its body, that should be pointing at the word "HERE".

In general, whenever this window or the one below it has more text than is

currently visible, the line at the bottom of the window will offer you a
place to point with the mouse to scroll the text in the window. Right now,

for instance, you will notice that there is a part of that line that says

"Point tIERE to move backward." In general, this special line will be the

only way you have of knowing that there are more texts than what you can
read at the moment, so you should keep your eyes open for it.

As you may have guessed, this top window on your screen will be used for

explanatory texts like the one you're reading now. The second window is a

"menu" of options that you can use to get additional help. Each line
contains a brief description of another help topic. If you use the mouse to

point, at that line, and then press any button on the mouse, you will be
shown the corresponding help texts.

Sometimes there will be more choices in the menu than will fit in tile menu

window. At that time, the special line at the bottom of the window will
offer you a place where you can point in order to move forward or backward
in the list of choices. This is just like moving around in the help window.
Feel free to try it and see.

There are many other ways in which you can get help using the ACRONYM help
system. To find out about them, look through the list of choices in the
menu window and point to the appropriate line using your mouse. (Depending
on when you are seeing this, you will probably want either the first or
second line in the menu window.)

send.hcom

send: Send a message to another user

@any send
@Link send-s

@Link send-a

@Link send-n

@[_ink send-e
@Link talk

@link reply
@Link write

@Link rsend

@key cony

@key user



Fllli IMF'I J:MliN'IA'IION O1: ACRONYM 227

send.help

send: send a message to another user
Format: send destination-user[@host] [tty-name] I-all] [message]

Arguments: destination-user : person you want to send a message to.
tty-name : use to resolve ambiguity if the destination-user is

logged on more than once.

[-all] : send to all of the user's terminals.
[message] : send a one-line message to the user.

send.hmen

send-s f2 ** Summary of the send command
send-a f3 ** Arguments for the send command
send-n f4 ** Additional notes on the send command
send-e f5 ** Examples of the send command
talk f6 ** talk: Initiate a conversation with another user

reply f7 ** reply: Join in to a conversation with another user
write f8 ** write: Send a message to another user
rsend f9 ** rsend: send a message to any user o_ any UNIX machine on the network

mesg fl ** mesg: Enable/disable reception of messages

word.hcom

Commands relating to the key word 'word'

word.help

Select the appropriate menu item to find out about the command listed,
which matched the Key word 'word'

word.hmen

grep f2 ** grep/egrep/fgrep: Search for a pattern in a file,

egrep f3 ** egrep: Fast search for a pattern in a file

fgrep f4 ** fgrep: Fast search For a string (word) in a file
wc f5 ** wc: Display the number of lines, words, and characters in a file.



228 I'l I1:I)I-SIGN ANI) i!\,'AI.UA/ION 01: ON-I.INI" 1!1:.IP SYSTF,MS



TIII_ l'WO [,/NIX MANUAI,S 229

Appendix D
The Two UNIX Manuals

The experiments reported in this thesis strongly suggest that the quality of help texts is far more

important than the mechanisms by which those texts arc accessed or presented. However, several

standard "readability" metrics failed to reliably reflect which of the texts studied would be most

useful. Although there is a wide literature on the issue of text readability, there are no "fail-safe"

formulas to guarantee readability.

In the interest of promoting more informative and readable texts, samples of each are reproduced

here. For each of five commands (grep, ls, mail, rm, and sort), tile standard UNIX mamml entries

and the manual entries for the hybrid system are reproduced in this chapter.

The standard manual entries are the copyrighted property of A'l'&'l Bell l.aboratories, as modified

at Carnegie-Mellon University. The hybrid manual entries are derived frt)m Mark Sobell's book28,

and are reproduced here with permission of the author and publisher, who retain all rights to fiirther

reproduction. The form in which they appear here is slightly modified to reflect some variations in

the CMU versions of the commands they document, and to correct a few minor omissions. They

appear in precisely the form in which they were used in the experiments.

In comparing these sample texts, the reader should bear in mind that, for whatever reason, the

Sobeil/ACRONYM texts proved significantly better than the standard manual texts, and by a wide

margin. It is left to the reader's judgment to determine why this was the case.

28From A Practical Guide to the IINIX TM System by Mark G. Sobell. Copyright (c) 1984by Mark G. Sobell. Published

by the Benjamin/Cummings Publishing Company.



2._0 T111-I)I_SIGN ANi)I_VAI [!ATION Ol: ON-I INI_ I IF]] _SYS'Fi!MS

D.1. The grep command" standard UNIX manual

GREP(1) UNIX Programmer's Manual GREP(1)

NAME

grep, egrep, fgrep - search a file for a pattern

SYNOPSIS

grep [ option ] ... expression [ file ] ...

egrep [ option ] ... [ expression ] [ file ] ...

fgrep [ option ] ... [ strings ] [ file ]

DESCRIPTION

Commands of the grep family search the input files (standard
input default) for lines matching a pattern. Normally, each

line found is copied to the standard output. Grep patterns

are limited regular expressions in the style of ex(1); it

uses a compact nondeterministic algorithm. Egrep patterns

are full regular expressions; it uses a fast deterministic

algorithm that sometimes needs exponential space. Fgrep
patterns are fixed strings; it is fast and compact. The

following options are recognized.

-v All lines but those matching are printed.

-x (Exact) only lines matched in their entirety are

printed (fgrep only).

-c Only a count of matching lines is printed.

-I The names of files with matching lines are listed

(once) separated by newlines.

-n Each line is preceded by its relative line number in
the file.

-b Each line is preceded by the block number on which it
was found. This is sometimes useful in locating disk

block numbers by context.

-i The case of letters is ignored in making comparisons.

(E.g. upper and lower case are considered identical,)
(grep and fgrep only)

-s Silent mode. Nothing is printed (except error mes-
sages). This is useful for checking the error status.

-w The expression is searched for as a word (as if sur-
rounded by '\<' and '\>', see ex(1).) (grep only)

-e expression
Same as a simple expression argument, but useful when
the expression begins with a -.

-f file

The regular expression (egrep) or string list (fgrep)
is taken from the file.



Fill! TWO [)NIX MANUAl S 231

In all cases the file name is shown if there is more than

one input file. Care should be taken when using the charac-
ters $ " [ _ I ( ) and \ in tile expression as they are also
meaningful to the Shell. It is safest to enclose the entire
expression argument in single quotes ' '

Fgrep searches for lines that contain one of the (newline-
separated) strings.

Egrep accepts extended regular expressions. In the follow-
ing description 'character' excludes newline:

A \ followed by a single character other than newline
matches th_L character.

The character " ($) matches the beginning (end) of a
line.

A . matches any character.

A single character not otherwise endowed with special
meaning matches that character.

A string enclosed in brackets [] matches any single
character from the string. Ranges of ASCII character
codes may be abbreviated as in 'a-zO-g'. A ] may occur
only as the first character of the string. A literal -
must be placed where it can't be mistaken as a range
indicator.

A regular expression followed by * (+, ?) matches a
sequence of 0 or more (I or more, 0 or I) matches of
the regular' expression.

Two regular expressions concatenated match a match of
the first followed by a match of the second.

Two regular expressions separated by I or newline match
either a match for the first or a match for the second.

A regular expression enclosed in parentheses matches a
match for thu regular expression.

The order of precedence of operators at the same parenthesis

level is [] then "_? then concatenation then I and newline.

SEE ALSO

ex(1), sed(1), sh(1)

DIAGNOSTICS

Exit status is 0 if any matches are found, I if none, 2 for

syntax errors or inaccessible files.

BUGS

Ideally there should be only one grep, but we don't know a

single algorithm that spans a wide enough range of space-
time tradeoffs.

Lines are limited to 256 characters; longer lines are trun-
cated.



232 TIIE DI!SIGN AND EVAI.UATION OF ON-I,INI" l II'.'l,l ) SYSTF.MS

D.2. The grep command" SobelI/ACRONYM Version

grep: Search for a pattern in a file.

Format: grep [options] pattern [rile-list]

Options: -c (count) display number of lines only
-e (expression) pattern can begin with hyphen

-l (list) display filenames only

-n (number) display line numbers

-s (status) return exit status only

-v (reverse) reverse sense of test

-i (ignore case) consider upper" and lower case equivalent

Arguments: pattern : a regular expression, can be a simple string

SUMMARY OF THE GREP COMMAND

grep searches one or more files, line by line, for a pattern. The pattern

can be a simple string, or another form of a regular expression, grep takes
various actions, specified by options, each time it finds a line that

contains a match for the pattern.

grep takes its input from files specified on the command line or from the
standard input.

OPTIONS FOR THE GREP COMMAND

If you do not specify any options, grep sends its lines to the standard

output. If you specify more than one file on the command line, grep
precedes each line that it displays with the name of the file that it came
from.

-c (count) grep only indicates the number of lines in each file that
contain a match.

-e (expression) This option allows you to use a pattern beginning
with a hyphen (-). If you do not use this option and specify

a pattern that begins with a hyphen, grep assumes that the
hyphen introduces an option and the search will not work.

-l (list) grep displays the name of each file that contains one or
more matches, grep displays each filename only once, even
if the file contains more than one match.

-n (number) grep precedes each line by its line number in the file.
The file does not need to contain line numbers -- this number

represents the number of lines in the file up to and

including the displayed line.

-s (status) grep returns an exit status value without any output.

-v (reverse sense of test) This option causes lines NOT containing
a match to satisfy the search. When you use this option by

itself, grep displays all lines that do not contain a match.
-i (ignore case) This option causes lowercase letters in the pattern

to match uppercase letters in the file and vice versa.

ARGUMENTS FOR THE GREP COMMAND

The pattern is a simple string or a regular expression. You must quote

regular expressions that co(_tain special characters, SPACEs, or TABs. An
easy way to quote these characters is to enclose the entire expression within

apostrophes.

The file-lisL contains pathnames of plain text files that grep searches.

ADDITIONAL NOTES ON THE GREP COMMAND

grep returns an exit status of zero if a match is found, one if no match is

found, and two if the file is not accessible or there is a syntax error.

There are two utilities that perform functions similar to that of grep. The



"l111! TWO UNIX MANUAI,S 233

egrep utility can be faster than grep, but may also use more space, fgrep
is fast and compact, but can process only simple strings, not regular

expressions.

EXAMPLES OF THE GREP COMMAND

The following examples assume that the working directory contains 3 files:
"testa", "testb", and "testc". The contents of each file is shown below.

testa testb testc

aaabb aaaaa AAAAA

bbbcc bbbbb BBBBB

ff-ff ccccc CCCCC

cccdd ddddd DDDDD

dddaa

grep can search for a pattern that is a simple string of characters. The
following command line searches "testa" for the string "bb". grep displays
each line containing bb.

$ grep bb testa
aaabb
bbbcc

$

The -v option reverses the sense of the test. The example below displays
all the lines WITHOUT bb.

$ grep -v bb testa
ff-ff
cccdd
dddaa

$

The -n flag displays the line number of each displayed line.

$ grep -n bb testa
l:aaabb
2:bbbcc
$

grep can search through more than one file. Below. grep searches through
each file in the working directory. (The ambiguous file reference * matches
all filenames.) The name of the file containing the string precedes each
line of output.

$ grep bb *
testa:aaabb
testa:bbbcc
testb:bbbbb
$

The search that grep performs is case-sensitive. Because the previous
examples specified lowercase bb, grep did not find the uppercase string,
BBBBB, in testc, The -i option causes uppercase and lowercase letters
to be regarded as equivalent.

$ grep -i bb *
testa:aaabb
testa:bbbcc
testb:bbbbb
testc: BBBBB
$

The -c option displays the name of each file, followed by the number of



234 Tllli I)I;SIGN ANI) I:_VAIUATION OF ON-IINI! l llilP SYSTFMS

lines in the file that contain a match.

$ grep -c hb *
testa:2
testb:1
testc:O

$

The -e option searches for a string that begins with a hyphen. This option
causes grep to accept the hyphen as part of the pattern and not as an
indicator that an option follows.

$ grep -e -ff *
testa: ff-ff

$

The following command line displays lines from the file text2 that contain a
string of characters starting with "st", followed by zero or more characters
(.*), and ending in "ing".

$ grep 'st.*ing' text2
• . .

$'"



T111:.TWO UNIX MANUALS 235

D.3. The Is command" standard UNIX manual

LS(1) UNIX Programmer's Manual LS(1)

NAME

Is - list contents of directory

SYNOPSIS

Is [ -abcdfgilmqrstuxICFR ] name ...

l [ Is options ] name ...

DESCRIPTION

For each directory argument, Is lists the contents of the
directory; for each file argument, Is repeats its name and

any other information requested. Tile output is sorted

alphabetically by default. When no argument is given, the
current directory is listed. When several arguments are

given, the arguments are first sorted appropriately, but

file arguments appear before directories and their contents.

There are three major listing formats. Tile format chosen

depends on whether the output is going to a teletype, and

may also be controlled by option flags. Tile default format
fer a teletype is to list the contents of directories in
multi-column format, with the entries sorted down the

columns. (Files which are not the contents of a directory

being interpreted are always sorted across the page rather
than down the page in columns. This is because the indivi--

dual File names may be arbitrarily long.) If the standard
output is not a teletype, the default format is to list one
entry per line. Finally, there is a stream output format in
which files are listed across the page, separated by ',"
characters. The -m flag enables this format; when invoked
as 1 this format is also used.

There are an unbelievable number of options:

-I List in long format, giving mode, number of links,
owner, size in bytes, and time of last modification for
each file. (See below.) If the file is a special file
the size field will instead contain the major and minor
device numbers.

-t Sort by time modified (latest first) instead of by
name, as is normal.

-a List all entries; usually ' ' and '..' are suppressed.

-s Give size in blocks, including indirect blocks, for
each entry.

-d If argument is a directory, list only its name, not its
contents (mostly used with -I to get status on direc-
tory).

-r Reverse the order of sort to get reverse alphabetic or
oldest first as appropriate.

-u Use time of last access instead of last modification

for sorting (-t) or printing (-I).



236 Till! i)IiSIGN ANI) !!VAI .UATION OF ON-I ,INI! 111'] P SYSTF_MS

-c Use time of file creation for sorting or printing.

-i Print i-number in first column of the report for each
file listed.

-f Force each argument to be interpreted as a directory
and list the name found in each slot. This option

turns off -I, -t, -s, and -r, and turns on -a; the
order is the order in which entries appear in the

directory.

-g Give group ID instead of owner ID in long listing.

-m force stream output format

-I force one entry per line output format, e.g. to a tele-

type

-C force multi-column output, e.g. to a file or a pipe

-q force printing of non-graphic characters in file names
as the character '?'; this normally happens only if the

output device is a teletype

-b force printing of non-graphic characters to be in the
\ddd notation, in octal.

-x force columnar printing to be sorted across rather than

down the page; this is the default if the last charac-
ter of the name the program is invoked with is an 'x'.

-F cause directories to be marked with a trailing '/' and
executable files to be marked with a trailing '*'; this
is the default if the last characLer of the name the

program is invoked with is a 'f'.

-R recursively list subdirectories encountered.

The mode printed under the -I option contains 11 characters
which are interpreted as follows: the first character is

d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
m if the entry is a multiplexor-type character special

file:

if the entry is a plain file.

The next 9 characters are interpreted as three sets of three

bits each. The first set refers to owner permissions; the

next to permissions to others in the same user-group; and
the last to all others. Within each set the three charac-

ters indicate permission respectively to read, to write, or

to execute the file as a program. For a directory, 'exe-

cute' permission is interpreted to mean permission to search

the directory for a specified file. The permissions are
indicated as follows:

r if the file is readable;

w if the file is writable;

x if the file is executable;

- if the indicated permission is not granted.

The group-execute permission character is given as s if the

file has set-group-ID mode: likewise the user-execute per-



Tlll! FWO UNIX MA_UAIS 237

mission character is given as s if the file llas set-user-ID
mode.

The last character of the mode (normally 'x' or '-') is t if
the 1000 bit of the mode is on. See chmod(1) for the mean-

ing of this mode.

When the sizes of the files in a directory are listed, a
total count of blocks, including indirect blocks is printed.

FILES

/etc/passwd to get user ID's for 'Is -I'.
/etc/group to get group ID's for 'Is -g'.

BUGS

Newline and tab are considered prinling characters in file
names,

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype
is undesirable as ''Is -s'' is much different than

''Is -s I Ipr'' On the other hand, not doing this setting
would make old shell scripts which used Is almost certain
losers,

Column widths choices are poor for terminals which can tab.



238 T111! I)IiSIGN AND I!¥AI.UAHON O1: ON-I ,INI! i IF] P SYSTIiMS

D.4. The Is command" SobelI/ACRONYM Version

Is: Display information about a file

Format: Is [options] [file-list]

Options: -a all entries
-d directory

-g group
-i display i-numbers

-l long
-r reverse
-s size in blocks
-t modified time
-u accessed time

SUMMARY OF THE LS COMMAND

Is displays information abouL one oc more files. It lists the information
alphabetically by filename unless you use an option to change the order.

OPTIONS FOR THE LS COMMAND

The options determine Lhe type of information, and the order in which the
information is displayed. When you do not use an option, Is displays a
short listing, containing only the names of files. The options are:

-a (all entries) Without a file-list (no argument on the command
line), this option causes Is to display information about
all the files in the working directory, including invisible
(hidden) files. When you do not use this option, Is does
not list information about invisible files unless you
specifically request it.

In a similar ma_ner, when you use this option with a
file-list ti_at, includes an appropriate ambiguous file
reference (wildcard), Is displays information about
invisible files.

-d (directory) This option causes Is to display the names of
directories without displaying their contents. When

you give this option without an argument, Is displays
information about the working directory (.). This option
displays plain files normally.

-g (group) This option causes Is to display group identification.
When you use this option with the -I option, Is replaces the
owner name in the display with the group name.

-i (i-number) This option causes Is to display the i-number of each
file. The i-number is the unique identifying number that

UNIX assigned to the file. It is usually useless.
-I (long) This option causes Is to display eight columns of

information about each file. These columns are described in

another help message, "Is -I: long listings of file
information", which is one of your current help menu choices.

-r (reverse) This option causes Is to display the list of filenames
in reverse alphabetical order or, when used in conjunction
with the -t or .-u options, in reverse time order (least
recently modified/accessed first).

-s (size) This option causes Is to display the size of each file in
512 byte blocks. The size precedes the filename.

When used with the -I option, the -s option causes Is to
display the size in column one and to shift each of the

other items over one column Lo the right.

-t (time modified) This option causes Is to display the list of
filenames in order by the time of last modification: It

displays the files that were modified most recently first.

-u (time accessed) ]his option causes Is to display the list of

filenames together with the last time that each file was



Tilt:" TWO UNIX MANUAI,S 239

accessed. The list is in alphabetical order if you do not

use an option that specifies another order.

LS -L: LONG LISTINGS OF FILE INFORMATION

The -l option causes Is to display eight columns of information about each

file in a format something like this:

drwxrwxr-x 1 jenny 1296 Apr 6 22:56 letter

The first column, which contains I0 characters, is divided as follows:

The first character describes the type of file:

- indicates a plain file
b indicates a block device file

c indicates a character device file

d indicates a directory file

The next nine characters represent all the access permissions
associated with the file. These nine characters are divided
ir_to three sets of three characters each.

The first three characters represent the owner's access

permissions. If the owner has read access permission to
the file, an "r" appears in the first character position.

If the owner is not permitted to read the file, a hyphen

appears in this position. The next two positions represent
the owner's write and execute access permissions. A "w"

appears in the second position if the owner is permitted

to write to the file, and an "x" appears in the third

position if the owner is permitted to execute the file.
An "s" in the third position indicates that the file has set

user ID permission. A hyphen appears if the owner does not
have the access permission associated with the character

position.
In a similar manner, the second and third sets of three

characters represent the access permissions of the user's

group and other users. An "s" in the third position of the
second set of characters indicates that the file has set

group ID permission.
Refer to the chmod utility for information on changing

access permissions.
The next column indicates the number of links to the file.

The third column displays the name of the owner of the file.
The fourth column indicates the size of the file in bytes, or, if

information about a device file is being displayed, the

major and minor device numbers. In the case of a directory,
this is the size of the actual directory file, not the size
of the files that are entries within the directory.

The fifth and sixth columns display the date and time the file was
last modified.

The last column displays the name of the file.

ARGUMENTS FOR THE LS COMMAND

When you do not use an argument, ls displays the names of all the files in

the working directory.

The file-list argument contains one or more pathnames of files that Is

displays information for. You can use the pathnames of any plain,
directory, or device file. These pathnames can include ambiguous file
references.

When you give an ambiguous file reference (wildcard), Is displays the names
of all the files in any directories specified by the wildcard, in addition

to files in the working directory.

When you specify a directory file, Is displays the contents of the



240 TI tI_ I)I!SIGN ANI) I!VAI .UATION OF ON-I .INF l ll!l P SYSTFMS

directory. Is displays the name of the directocy only when it is needed to

avoid ambiguity (i.e., when Is is displaying the contents of more than one
directory, it displays the names of the directories to indicate which files

you can find in which directory). If you specify a plain file, Is displays

information about just that file.

EXAMPLES OF THE LS COMMAND

All of the following examples assume that the user does not change from the

current working directory.

The first command line shows the Is utility without any options or

arguments. Is displays an alphabetical list of the names of the files in

the working directory.

$ Is

bin calendar letters

c execute shell

Next, the -l (long) option causes Is to display a long list. The files are

still in alphabetical order.

$ Is -l
total 8

drwxrwxr-x 2 jenny 80 Nov 20 09:17 bin
drwxrwxr-x 2 jenny 144 Sep 26 11:59 c
-rw-rw-r-- I jenny 104 Nov 28 11:44 calendar
-rwxrw-r-- I. jenny 85 Nov 6 08:27 execute
drwxrwxr-x 2 jenny 32 Apt 6 22:56 letters
drwxrwxr-x 16 jenny 1296 Dec 6 17:33 shell

The -a option lists invisible files when you do not specify an argument,

.profile c execute shell
.. bin calendar letters

Combining the -a and -I options above causes Is to display a long listing of
all the files, including invisible files, in the working directory. The

list is still in alphabetical order.

$ Is -al
total 12

drwxrwxr-x 6 jenny 480 Dec 6 17:42 .
drwxFwxr-- 26 root 816 Dec 6 14:45 ..

-rw-rw-r-- I jeny 161 Dec 6 17:15 .profile

drwxrwxr-x 2 jenny 80 Nov 20 09:17 bin

drwxrwxr-x 2 jenny 144 Sep 26 11:59 c
-rw-rw-r-- I jenny 104 Nov 28 11:44 calendar

-rwxrw-r-- I jenny 85 Nov 6 08:27 execute

drwxrwxr-x 2 jenny 32 Apr 6 22:56 letters

drwxrwxr-x 16 jenny 1296 Dec 6 17:33 shell

The -r (reverse order) option is added to the command line from the previous

example. The list is now in reverse alphabetical order.

$ Is -ral

total 12

drwxrwxr-x 16 jenny 1296 Dec 6 17:33 shell
drwxrwxr-x 2 jenny 32 Apt 6 22:56 letters

-rwxrw-r-- I jenny 85 Nov 6 08:27 execute

-rw-rw-r-- I jenny 104 Nov 28 11:44 calendar

drwxrwxr-x 2 jenny 144 Sep 26 11:59 c

drwxrwxr-x 2 jenny 80 Nov 20 09:17 bin

-rw-rw-r-- I jeny 161 Dec 6 17:15 .profile
drwxrwxr-- 26 root 816 Dec 6 14:45 ..



Till.:, TWO UNIX MANUALS 241

drwxrwxr-x 6 jenny 480 Dec 6 17:42 .

The -t (time) option causes Is to list files so that the most recently

modified file appears at the top of the list.

$ Is -tl
total 8

drwxrwxr-x 16 jenny 1296 Dec 6 17:33 shell

-rw-rw-r-- I jenny 104 Nov 28 11:44 calendar

drwxrwxr-x 2 jenny 80 Nov 20 09:17 bin

-rwxrw-r-- I jenny 85 Nov 6 08:27 execute

drwxrwxr-x 2 jenny 144 Sep 26 11:59 c

drwxrwxr-x Z.jenny 32 Apr 6 22:56 letters

The -r option, when combined with the -t option, causes Is to list files so

that the least-recently modified file appears aL the top of the list.

$ Is -trl
total 8

drwxrwxr-x 2 jenny 32 Apr 6 22:56 letters

drwxrwxr-x 2 jenny 144 Sep 26 11:59 c

-rwxrw-r-- I jenny 85 Nov 6 08:27 execute
drwxrwxr-x 2 jenny 80 Nov 20 09:17 bin

-rw-rw-r-- I jenny 104 Nov 28 11:44 calendar

drwxrwxr-x 16 jenny 1296 Dec 6 17:33 shell

The next example shows the Is utility with a directory filename as an

argument, ls lists the contents of the directory in alphabetical order.

$ Is bin

c e Isdir

The -1 option gives a long listing of the contents of the directory.

$ Is -l bin
total 3

-rwxrw-r-x I jenny 48 Oct 6 21:38 c

-rwxrw-r-- I jenny 156 Oct 6 21:40 e

-rwxrw-r-- I jenny 136 Nov 7 16:48 Isdir

To find out information about the directory file itself, use the -d

(directory) option. This causes Is to only list information about the

directory.

$ Is -dl bin

drwxrwxr-x 2 jenny 80 Nov 20 09:17 bin



242 TI ii" 1)I:.SIG N ANI) F.VAI .UATION OF ON-I,INE 1II:.I,P SYSTFMS

D.5. The mail command" standard UNIX manual

MAIL(1) UNIX Programmer's Manual MAIL(1)

NAME

mail - send and receive mail

SYNOPSIS

mail [ -f [ name ] ] [ people ... ]

INTRODUCTION

Mail is a intelligent mai.l processing system, which has a

command syntax reminiscent of ed with lines replaced by mes-

sages.

Sending mail. To send a message to one or more other peo-

ple, mail can be invoked with arguments which are the names
of people to send to. You are then expected to type in your

message, followed by an EOT (control-D) at the beginning of
a line. The section below, labeled Replying to or originat-

ing mail, describes some features of mail available to help

you compose your letter.

Reading mail. In normal usage, mail is given no arguments

and checks your mail out of the post office, then printing
out a one line header of each message there. The current

message is initially the first message (numbered I) and can
be printed using the print command (which can be abbreviated

p). You can move among the messages much as you move
between lines in ed, with the commands '.' and '-' moving

backwards and forwards, and simple numbers typing the
addressed message.

Disposing of mail. After examining a message you can delete
(d) the message or reply (r) to it. Deletion causes the
mail program to forget about the message. This is not
irreversible, the message can be undeleted (u) by giving its
number, or the mail session can be aborted by giving the

exit (x) command. Deleted messages will, however, usually
disappear never to be seen again.

Specifying messages. Commands such as print and delete
often can be given a list of message numbers as argument to
apply to a number of messages at once. Thus ''delete 1 2''
deletes messages 1 and 2, while ''delete 1-5'' deletes mes-
sages 1 through 5. The special name ''*'' addresses all
messages, and ''$'' addresses the last message; thus the
command top which prints the first few lines of a message
could be used in ''top *'' to print the first few lines of

all messages.

Replying to or originating mail. You can use the reply com-
mand to set up a response to a message, sending it back to
the person who it was from. Text you then type in, up to an
end-of-file (or a line consisting only of a ''.'') defines
the contents of the message. While you are composing a mes-

sage, mail treats lines beginning with the character '-'
specially. For instance, typing ''~m'' (alone on a line)
will place a copy of the current message into the response

right shifting it by a tabstop. Other escapes will set up



TI I1,_TWO UNIX MANUAI,S 9.43

subject fields, add and delete recipients to the message and
allow you to escape to an editor to revise the message or to
a shell to run some commands. ([hese options will be given
in the summary below.)

Ending a mail processing session. You can end a mail ses-
sion with the quit (q) command. Messages which have been
examined go to your mbox ftle unless they have been deleted
in which case they are discarded. Unexamined messages go
back to the post office. The -f option causes mail to read
in the contents of your mbox (or the specified file) for
processing; when you quit mail writes undeleted messages
back to this file.

Personal and systemwide distribution lists. It is also pos-
sible to create a personal distribution lists so that, for
instance, you can send mail to ''cohorts'' and have it go to

a group of people. Such lists can be defined by placing a
line like

alias cohorts bill ozalp sklower jkf mark cory:kridle

in the file .mailrc in your home directory. The current
list of such aliases can be displayed by the alias (a) com-
mand in mail. System wide distribution lists can be created
by editing /usr/lib/aliases, see aliases(5) and deliver-
mail(8): these are kept in a slightly different syntax. In
mail you send, personal aliases will be expanded in mail
sent to others so that they will be able to reply to the

recipients. System wide aliases are not expanded when the
mail is sent_ but any reply returned to the machine will
have the system wide alias expanded as all mail goes through
de!ivermail. If you edit /usr/lib/aliases. you must run the

program newa]iases(1).

Network mail (ARPA, UUCP, Berknet) Mail to sites on the
ARPA network and sites within Bell laboratories can be sent

using ''name@site'' for ARPA-net sites or ''machine!user''
for Bell labs sites, provided appropriate gateways are known

to the system. (Be sure to escape the ! in Bell sites when

giving it on a csh command line by preceding it with an \.
Machines on an instance of the Berkeley network are

addressed as ''machine:user'', e.g. ''csvax:bill''. When

addressed from the arpa-net, ''csvax:bill'' is known as

''csvax.bill@berkeley''

Mail has a number of options which can be set in the .mailrc
file to alter its behavior; thus ''set askcc'' enables the

''askcc'' feature. (These options are summarized below.)

SUMMARY

(Adapted from the 'Mail Reference Manual') Each command is

typed on a line by itself, and may take arguments following
the command word. The command need not be typed in its

entirety - the first command which matches the typed prefix
is used. For the commands which take message lists as argu-

ments, if no message list is given, then the next message
forward which satisfies the command's requirements is used.

If there are no messages forward of the current message, the
search proceeds backwards, and if there are no good messages

at all, mail types ''No applicable messages'' and aborts the
command.

- Goes to the previous message and prints it out.

If given a numeric argument n , goes to the n th



244 "i'IlE I)I{SIGN AND I!VALUA'IION Ol r ON-LINE IIEI] _ SYSTEMS

previous message and prints it.

? Prints a brief summary of commands.

I Executes the UNIX shell command which follows.

alias (a) With no arguments, prints out all

currently-defined aliases. With one argument,

prints out that alias. With more than one argu-
ment, adds the users named in the second and

later arguments to the alias named in the first

argument.

chdir (c) Changes the user's working directory to that

specified, if given. If no directory is given,

then changes to the user's login directory.

delete (d) Takes a list of messages as argument and
marks them all as deleted. Deleted messages

will not be saved in mbox , nor will they be
available for most other commands.

dp (also dr) Deletes the current message and prints

the next message. If there is no next message,

mail says ''at EOF.''

edit (e) Takes a list of messages and points the text
editor at each one in turn. On return from the

editor, the message is read back in.

exit (ex or x) Effects an immediate return to the
Shell without modifying the user's system mail-
box, his mbox file, or his edit file in -f .

from (f) Takes a list of messages and prints their

message headers.

headers (h) Lists the current range of headers, which is
an 18 message group. If a ''+'' argument is

given, then the next 18 message group is

printed, and if a ''-'' argument is given, the

previous 18 message group is printed.

help A synonym for ?

hold (ho, also preserve) Takes a message list and

marks each message therein to be saved in the
user's system mailbox instead of in mbox. Does
not override the delete command.

mail (m) Takes as argument login names and distribu-

tion group names and sends mail to those people.

next (n like + or CR) Goes to the next message in
sequence and types it. With an argument list.

types the next matching message.

preserve A synonym for hold.

print (p) Takes a message list and types out each mes-

sage on the user's terminal.

quit (q) Terminates the session, saving all
undeleted, unsaved messages in the user's mbox

file in his login directory, preserving all mes-



'['1 il". TWO UNIX MANUAl ,S 245

sages marked with hold or preserve or never
referenced in his system mailbox, and removing

all other messages from his system mailbox. If

new mail has arrived during the session, the

message ''You have new unail'' is given. If
given while editing a mailbox file with the -f

flag, then the edit file is rewritten. A return
to the Shell is effected, unless the rewrite of

edit file fails, in which case the user can

escape with the exit command.

reply (r) Takes a message list and sends mail to each
message author just like the mail command. The

default message must not be deleted.

respond A synonym for reply .

save (s) Takes a message list and a filename and
appends each message in turn to the end of the
file. The filename in quotes, followed by the
line count and character count is echoed on the

user's terminal.

set (se) With no arguments, prints all variable
values. Otherwise, sets option. Arguments are

of the form ''option=value'' or ''option.''

shell (sh) Invokes an interactive version of the
shell.

size Takes a message list and prints out the size in

characters of each message.

top lakes a message list and prints the top few
lines of each. The number of lines printed is

controlled by the variable toplines and defaults
to five.

type (t) A synonym for print .

unalias Takes a list of names defined by alias commands

and discards the remembered groups of users.

The group names no longer have any significance.

undelete (u) Takes a message list and marks each one as

not being deleted.

unset Takes a list of option names and discards their
remembered values; the inverse of set .

visual (v) Takes a message list and invokes the display
editor on each message.

write (w) A synonym for save .

xit (x) A synonym for exit .

Here is a summary of the tilde escapes, which are used when

composing messages to perform special functions. Tilde
escapes are only recognized at the beginning of lines. The

name ''tilde escape'' is somewhat of a misnomer since the

actual escape character can be set by the option escape.

-!command Execute the indicated shell command, then return

to the message.



246 1"IIE I)I'SIGN AND FNAI.UAT1ON Oi: ON-LINF. Ilt'I P SYSTEMS

~c name ... Add the given names to the list of carbon copy
recipients.

~d Read the file ''dead.letter'' from your home

directory into the message.

-e Invoke the text editor on the message collected

so far. After the editing session is finished,

you may continue appending text to the message.

~h Edit the message header fields by typing each

one in turn a_id allowing the user to append text

to the end or modify the field by using the
current terminal erase and kill characters.

-m messages Read the named messages into the message being

sent, shifted right one tab. If no messages are
specified, read the current message.

~p Print out the message collected so far, prefaced
by the message header fields.

~q Abort the message being sent, copying the mes-

sage to ''dead.letter'' in your home directory
if save is set.

-r filename Read the named file into the message.

~s string Cause the named string to become the current
subject field.

~t name ... Add the given names to the direct recipient
list.

-v Invoke an alternate editor (defined by the
VISUAL option) on the message collected so far.

Usually, the alternate editor will be a screen

editor. After you quit the editor, you may

resume appending text to the end of your mes-

sage.

-w filename Write the message onto the named file.

~Icommand Pipe the message through the command as a

filter. If the command gives no output or ter-

minates abnormally, retain the original text of
the message. The command fmt(1) is often used

as command to rejustify the message.

--string Insert the string of text in the message pre-

faced by a single ~. If you have changed the
escape character, then you should double that
character in order to send it.

Options are controlled via the set and unset commands.

Options may be either binary, in which case it is only sig-

nificant to see whether they are set or not, or string, in
which case the actual value is of interest. The binary

options include the following:

append Causes messages saved in mbox to be appended

to the end rather than prepended. (This is

set in /usr/lib/Mail.rc on version 7 sys-
tems.)



TI lI_ TWO UNIX MANUAI,S 247

ask Causes mail to prompt you for the subject of
each message you send. If you respond with
simply a newline, no subject field will be
sent.

askcc Causes you to be prompted for additional
carbon copy recipients at the end of each
message. Responding with a newline indicates
your satisfaction with the current list.

autoprint Causes the delete command to behave like dp -
thus, after deleting a message, the next one
will be typed automatically.

ignore Causes interrupt signals from your terminal
to be ignored and echoed as s.

metoo Usually, when a group is expanded that con-
tains the sender, Lhe sender is removed from
the expansion. Setting this option causes

the sender to be included in the group.

quiet Suppresses the printing of the version when
first invoked.

save Causes the message collected prior to a
interrupt to be saved on the file

''dead.letter'' in your home directory on
receipt of two interrupts (or after a ~q.)

The following options have string values:

EDITOR Pathname of the text editor to use in the
edit command and ~e escape. If not defined,
then a default editor is used.

SHELL Pathname of the sheil to use in the ! command
and the ~! escape. A default shell is used
if this option is not defined.

VlSUAL Pathname of the text editor to use in the

visual command and ~v escape.

escape If defined, the first character of this
option gives the character to use in the
place of ~ to denote escapes.

record If defined, gives the pathname of the file
used to record all outgoing mail. If not
defined, then outgoing mail is not so saved.

toplines If defined, gives the number of lines of a
message to be printed out with the top com-
mand; normally, the first five lines are
printed.

FILES

/usr/spool/mail/* post office

~/mbox your old mail

~/.mailrc file giving initial mail commands
/tmp/R# temporary for editor escape
/usr/lib/Mail.help* help files
/usr/lib/Mail.rc system initialization file
/bin/mail to do actual mailing
/etc/delivermail postman



248 '1"IIE I)I'SIGN AND F.VAI,UATION O1: ON-I,INE IIEI ,P SYSTEMS

SEE ALSO

binmail(1), fret(l), newaliases(1), aliases(5), deliver-
mai] (8)
'The Mail Reference Manual'

AUTI40R
Kurt Shoens

BUGS



"1II1! TWO UNIX MANUAI,S 249

D.6. The mail command: SobelI/ACRONYM Version

mail: Send or receive mail

Format-l: mail user-list

Format-2: mail [options]

The first format sends mail to the user-list. The second format displays

mail that you have received and prompts you with a ? following each letter.

Responses to ?

? help
d delete mail

q quit
w write to mbox

w file write to named file

RETURN proceed to next letter

p redisplay previous letter

Options:

-p display mail, no questions

-q quit on interrupt
-r reverse order

SUMMARY OF THE MAIL COMMAND

mail sends and receives mail between users. When you log on, the UNIX
system informs you if another user has sent you mail.

Use the first format ("mail user-list") to senJ mail to other users. When
sending mail, mail accepts text from the standard input. This input can be

redirected from a file or entered at the terminal. If you send mail from

the terminal, it must be terminated by a CONTROL-D or a line with just a
period on it. If you interrupt (DEL/RUBOUT/CONTROL-C) mail when you are
entering text at the terminal, the mail will not be sent.

Use the second format ("mail [options]") to display mail that you have

received. When displaying mail, the mail program prompts you with a

question mark following each piece of mail. The valid responses to this

prompt are discussed in the help text "Responses to the '?' prompt in the

mail utility", which is one of the entries in your current help menu,

OPTIONS FOR THE MAIL COMMAND

The following options affect mail that you have received and are displaying.
They are not for use when you are sending mail.

-p (display mail, no questions) _This option causes the mail

program to display mail without prompting you after each
piece of mail.

-q (quit on interrupt) Without this option, the interrupt key

(usually DEL, RUBOUT, or CONTROL-C) stops mail from
displaying the current piece of mail and allows it to

proceed with the next. When you use this option, an

interrupt will stop execution of the mail program and return
you to the Shell without changing the status of your mail.

-r (reverse order) Without this option, mail is displayed in a

last-piece-of-mail-received, first-piece-of-mail-displayed

order. This option causes mail to display mail in
chronological order.

ARGUMENTS FOR THE MAIL COMMAND

The user-list contains the User ID names of the users you want to send mail
to.

RESPONSES TO .THE '?" PROMPT IN THE MAIL UTILITY



250 T111'_"DESIGN AND [..'VA!UATION OF ON-I.INI:. 11EI.P SYSTI:.MS

The following are valid responses to the '?' prompt that is printed after

each piece of mail that the mail utility shows you.

? A question mark causes mail to display a summary of valid responses.
!<cmd> This response causes mail to exit to the Shell. execute whatever

command you typed, and return to the mail program when the command
has finished executing.

CONTROL-D This response causes the mail program to stop and leave unexamined

mail in the mailbox so that you can look at it the next time you
run mail.

d A d causes the mail program to delete the piece of mail it just
displayed, and proceed to the next one.

m[name] This response causes the mail program to remail the piece of mail to

the specified person or people. If you do not specify a person,

the mail is sent back to you again.

RETURN Press the RETURN key to proceed to the next piece of mail.

p A p causes the mail program to redisplay the previous piece of mail.

q A q has the same effect as CONTROL-D; you exit the mail program and
unexamined mail is saved until next time.

s[file] This response causes the mail program to save the piece of mail in

the named file or "mbox" if you do not specify a filename.
w[file] This response causes mail to save the piece of mail, without a

header, in the named file or "mbox" if you do not specify a filename.

x This response causes the mail program to exit and not change the

status of your mail.

EXAMPLES OF THE MAIL COMMAND

The first example below shows how to send a message to several users. In
this case, mail sends the message to users with the login names of hls,

alex, and jenny.

$ mail hls alex jenny

(message)

(message)

You can also compose a message in a file and then send it by redirecting the
input to mail. The command below sends the file today to barbara.

$ mail barbara < today



T_rwo u_× MAnUAlS 251

D.7. The rm command" standard UNIX manual

RM(2) UNIX Programmer's Manual RM(1)

NAME

rm, rmdir - remove (unlink) files

SYNOPSIS

rm [ -e ] [ -f ] [ -r ] [ -i ] [ - ] file ...

rmdir dir ...

DESCRIPTION

rm removes the entries for one or more files from a direc-

tory. If an entry was the last link to the file, the file

is destroyed. Removal of a file requires write permission
in its directory, but neither read nor write permission on
the file itself.

If a file has no write permission and the standard input is
a terminal, its permissions are printed and a line is read

from the standard input. If that line begins with 'y' the

file is deleted, otherwise the file remains. No questions

are asked and no errors are reported when the -f (force)
option is given.

If a designated file is a directory, an error comment is

printed unless the optional argument -r has been used. In
that case, rm r'ecursivel_ deletes the entire contents of the
specified directory, and the directory itself,

If the -i (interactive) option is in effect, rm asks whether
to delete each file, and, under -r, whether to examine each
directory.

If the -f option is not in effect, rm checks the extensions

in the environment variable RMEXTS (see below) against the
final extensions of each file, and asks whether to delete

each file whose extension matches. This is to prevent
accidental deletion of source code and other important
files.

The null option - indicates that all the arguments following
it are to be treated as file names. This allows the specif-
ication of file names starting with a minus.

The option -e will print out the path of each file or direc-
tory as it is removed. This is useful in shell scripts°

rmdir removes entries for the named directories, which must
be empty.

ENVIRONMENT

RMEXTS is a list of extensions that you would like to pro-
tect, using commas and/or spaces as separators.

EXAMPLES

Each of the following examples would protect files with any
of the extensions ".c", ".h", ".mss", ".p", ".pas":



252 IIII!I)I!SIGN ANI)I{VAI.UATION OI:ON-I,INIilll_I.PSYSTI_MS

RMEXTS:"c,h,mss,p,pas"; export RMEXTS

RMEXTS:"c h mss p pas"; export RMEXTS
RMEXTS="c , h , mss , p , pas"; export RMEXTS

SEE ALSO

unlink(2)

DIAGNOSTICS

Generally self-explanatory. It is forbidden to remove the

file '..' merely to avoid the antisocial consequences of
inadvertently doing something like 'rm -r .*'

HISTORY

12-Nov-83 Neal Friedman (naf) at Carnegie-Mellon University
Added description of -e option, which was provided by
John Schlag.

20-Jan-82 John Wicks (jrw) at Carnegie-Mellon University
Modified to describe check for proLected file exten-
sions set in the environment.



I =JF,'rwou,_=xM,xr_t;,_,s 253

D.8. The rm command: Sobeli/ACRONYM Version

rm: Delete a file (remove a link)
Format: rm [options] file-list
Options: -f force

-i interactive
-r recursive

SUMMARY OF THE RM COMMAND

rm removes links to one or more file. When you remove the last link, you
can no longer access the file and the system releases the space the file

occupied on the disk for use by another file (i.e, the file is deleted).

To delete a file, you must have execute and write access permission to the
parent directory of the file, but you do not need read or write access

permission to the file itself. If you are running rm from a terminal (i.e.
rm's standard input is coming from a terminal) and you do not have write
access permission to the file, rm displays your access permission and waits
for you to respond. If you enter "y" or "yes", rm deletes the file;
otherwise it does not. If the standard input is not coming from the
terminal, rm deletes the file without question.

OPTIONS FOR THE RM COMMAND

There are three options to the rm command:

-f (force) This option causes rm to remove files for which you do not have
write access permission, without asking for" your consent. It can
also be used to override protections given by the RMEXTS variable,
which is described in the section "Notes on the rm command".

-i (interactive) This option causes rm to ask you before removing each file.
If you use the -r option with this option, rm also asks you before
examining each directory. When you use the -i option with the *
wildcard, rm can delete files with characters in their filenames that

prevent you from deleting the files by other means.
-r (recursive) This option causes rm to delete the contents of the specified

directory and the directory itself. Use this option cautiously.

ARGUMENTS FOR THE RM COMMAND

The arguments to rm are a file-list that contains the list of files that rm

deletes. The list can include wildcards. Because you can remove a large
number of files with a single command, use rm with wildcards cautiously. If
you are in doubt as to the effect of an rm command with a wildcard, use the

echo utility with the same wildcard first, echo displays the list of files
that rm will delete.

ADDITIONAL NOTES ON THE RM COMMAND

Because rm will happily delete your most important files without a

complaint, the local version of rm has a feature that allows you to

safeguard certain types of files. If, in your .login or .profile, you set
the environment variable "RMEXTS" to be a list of filename extensions, then

rm will always ask for confirmation before deleting filenames with those
extensions (unless the -f option is specified). Thus, if RMEXTS is set to

"c p a l h mss", then no file whose name ends in ".c", ".p", ".a", ".l",
".h", or ".mss" will be deleted without confirmation.

EXAMPLES OF THE RM COMMAND

The following command lines delete files, both in the current working
directory and in another directory.

............. ,................._,:,_,_,,,_,,_,,,_,,,,_,:_,,_..................................... ..................................................................



254 T! 11:.I)I!SIGN AND IqVAI ,UATION OI: ON-i INI! i ilil P SYS'i'liMS

$ rm memo
$ rm letter memo1 memo2

$ rm /usr/jenny/temp

The following command deletes the directory "useless" and all its contents,
including the contents of any subdirectories. It should only be used if you
are absolutely positive you want to delete all those files.

$ rm -r useless



T==I;l_vou_=x,MANUA=S 255

D.9. The sort command" standard UNIX manual

SORT(1) UNIX Programmer's Manual SORT(l)

NAME

sort - sort or merge files

SYNOPSIS

sort [ -mubdfinrtx ] [ +posl [ -pos2 ] ] ... [ -o name ] [
-T directory ] [ name ] ...

DESCRIPTION

Sort sorts lines of all the named files together and writes
the result on the standard output. The name '-' means the

standard input. If no input files are named, the standard
input is sorted.

The default sort key is an entire line. Default ordering is

lexicographic by bytes in machine collating sequence. The
ordering is affected globally by the following options, one

or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field com-
parisons.

d 'Dictionary' order: only letters, digits and blanks are

significant in comparisons.

f Fold upper" case letters onto lower case.

i Ignore characters outside the ASCII range 040-0176 in
nonnumeric comparisons.

n An initial numeric string, consisting of optional

blanks, optional minus sign, and zero or more digits
with optional decimal point, is sorted by arithmetic

value. Option n implies option b.

r Reverse the sense of comparisons.

tx 'Tab character' separating fields is x.

The notation +posl -pos2 restricts a sort key to a field

beginning at posl and ending just before pos2. Posl and

pos2 each have the form m.n, optionally followed by one or
more of the flags bdfinr, where m tells a number of fields

to skip from the beginning of the line and n tells a number"

of characters to skip further. If any flags are present

they override all the global ordering options for this key,
If the b option is in effect n is counted from the first

nonblank in the field; b is attached independently to pos2.

A missing .n means .0: a missing -pos2 means the end of the
line. Under the -tx option, fields are strings separated by

x; otherwise fields are nonempty nonblank strings separated
by blanks.

When there are multiple sort keysL later keys are compared
only after all earlier keys compare equal. Lines that oth-

erwise compare equal are ordered with all bytes significant.



256 TI Ili I)I!SIGN ANI) I-VAI.UATION OF ON-I.INI! l li!I,P SYSTFMS

l hese option arguments are also understood:

c Check that the input file is sorted according to the
ordering rules; give no output unless the file is out
of sort.

m Merge only, the input files are already sorted.

o The next argument is the name of an output file to use
instead of the standard output. This file may be the
same as one of the inputs.

T The next argument is the name of a directory in which
temporary files should be made.

u Suppress all but one in each set of equal lines.
Ignored bytes and bytes outside keys do not participate
in this comparison.

Examples. Print in alphabetical order all the unique spel-
lings in a list of words. Capitalized words differ from
uncapitalized.

sort -u +Of +0 list

Print the password file (passwd(5)) sorted by user id number

(the 3rd colon-separated field).

sort -t: +2n /etc/passwd

Print the first instance of each month in an already sorted

file of (month day) entries. The options -um with just one
input file make the choice of a unique representative from a

set of equal lines predictable.

sort -um +0 -I dates

FILES

/usr/tmp/stm*, /tmp/* first and second tries for temporary
files

SEE ALSO

uniq(1), comm(1), rev(l), join(1)

DIAGNOSTICS

Comments and exits with nonzero status for various trouble

conditions and for disorder discovered under option -c.

BUGS

Very long lines are silently truncated.



TI I1_TWO UNIX MANUAl S 257

D. 10. The sort command" Sobeli/ACRONYM Version

sort: Sort and/or merge files

Format: sort [options] [field-specifier-list] [file-list]

Options: -b (blanks) ignore leading blanks

-c (check) check for proper sorting only

-d (dictionary) igdore nonalphanumerical and blank characters

-f (fold) sort uppercase letters as though they were lowercase
-m (merge) merge only, assume sorted order
-n (numeric) minus signs and decimal points take on their

arithmetic value (implies -b)
-o (output) must be followed by output filename
-r (reverse) reverse sense of sort
-tx (tab) x is input field delimiter
-u (unique) do not display a repeated line more than once

Arguments: field-specifier-list specifies input fields by pairs of pointers
as +f.c -f.c where f is the number of fields to skip and c is the
number of characters to skip.

SUMMARY OF IHE SORT COMMAND

The sort utility sorts and/or merges one or more text files in sequence.
When you use the -n option, sort performs a numeric sort.

Sort takes its input from files specified on the command line or from the

standard input. Unless you use the -o option, output from sort goes to the
standard output.

OPTIONS FOR THE SORT COMMAND

If you do not specify an option, sort orders the file in the machine
collating (ASCII) sequence. You can embed options within the
field-specifier-list. The options are:

-b (ignore leading blanks) Blanks (TAB and SPACE characters) are
normally field delimiters in the input file. Unless you use
this option, sort also considers leading blanks to be part of the
field they precede. This option causes sort to consider multiple
blanks as field delimiters, with no intrinsic value, so that sort
does not consider these characters in sort comparisons.

-c (check only) This option causes the sort to check to see that the

file is properly sorted, sort does not display anything if
everything is in order, sort displays a message if the file is not
in sorted order.

-d (sort in dictionary order) This option causes sort to ignore all
characters that are not alphanumeric characters or blanks.
Specifically, sort does not consider punctuation and CONTROL
characters.

-f (fold uppercase into lowercase) This option causes sort to consider

all uppercase letters to be lowercase letters, use this option when

you are sorting a file that contains both uppercase and lowercase
text.

-m (merge) This option causes the sort to assume that multiple input

files are in sorted order, sort merges these files without verifying
that they are sorted.

-n (numeric sort) When you use this option, minus signs and decimal

points take on their arithmetic meaning and the -b option is implied.

sort does not order lines or sort fields in the machine collating
sequence, but rather in arithmetic order.

-o (specify output file) You must place a filename after this option on

the command line. sort sends its output to this file instead of to

the standard output.

-r (reverse sense) This option reverses the sense of the sort (e.g., z



258 TtlIil)I!SIGN ANI)I_VAI,UATION OI'ON-I.1NI_III_IPSYSIIiMS

precedes a).

-tx (set tab character') When you use this option, replace the x with the
character that is the field delimiter in the input file. This new

character replaces blanks, which become regular (nondelimiting)
characters.

-u (unique lines) This option causes sort to output repeated lines only
once. sort outputs lines that are not repeated as it would without
this option.

ARGUMENTS FOR THE SORT COMMAND

lhe arguments to the sort program are all optional; they can include a
field-specifier list and/or a file-list. The field-specifier-list selects

one or more sort-fields within each line to be sorted. The sort utility
uses tile sort-fields to sort the lines. (See "Detailed Description of the

sort Command" for more details.) The file-list contains pathnames of
one or more plain files that contain the text to be sorted, sort sorts and

merges the files unless you use the -m option, in which case, sort only
merges the files.

DETAILED DESCRIPTION OF THE SORT COMMAND

In the following description, a line-field is a sequence of characters on a

line in the input field. These sequences are bounded by blanks and the
beginning and end of the line. Line-fields are used to define a sort field.

A sort-field is a sequence of characters that sort uses to put lines in
order. The description of a sort-field is based on line-fields. A

sort-field can contain part or all of one or more line-fields. In the
following line,

Toni Barnett 95020

the three line-fields are "Toni", " Barnett", and " 95020".

Possible sort-fields in this line might be "Barnett", "020", or any other
portion of a line.

The field-specifier-list contains pairs of pointers that define subsections

of each line (sort-fields) for comparison. If you omit the second pointer
from a pair, sort assumes the end of the line. A pointer is in the form

"+f.c" or "-f.c". the first of each pair of pointers begins with a plus
sign, while the second begins with a hyphen.

You can make a pointer (f.c) point to any character on a line. The f is the

number of line-fields you want to skip, counting from the beginning of the

line. The c is the number of characters you want to skip, counting from the
end of the last line-field you skipped with the f.

The -b option causes sort to count multiple leading blanks as a single
line-field delimiter character. If you do not use this option, sort

considers each leading blank to be a character in the sort-field, and
includes it in the sort comparison.

You can specify options that pertain only to a given sort-field by
immediately following the field specifier by one of the options b, d, f, i,

n, or r. In this case, you must NOT precede the options with a hyphen.

If you specify more than one sort-field, sort examines them in the order

that you specify them on the command line. If the first sort-field of

two-lines is the same. sort examines the second sort-field. If these are

again the same, sort looks at the third field. This process continues for
all the sort-fields you specify. If all the sort-fields are the same, sort
examines the entire line.

If you do not use any options or arguments, the sort is based on entire



T1 !1! TWO UNIX MANUAl S 259

lines.

EXAMPLES OF THE SORT COMMAND

The following examples assume Lhat a file named list is in the working
directory. All the blanks are SPACEs, not TABs.

$ cat list
Tom Winstrom 94201

Janet Dempsey 94111
Alice MacLeod 94114

David Mack 94114

Toni Barnett 95020

Jack Cooper 94072
Richard MacDonald 95510

$

The first example demonstrates sort without any options or arguments, other
than a filename, sort sorts the file on a line-by-line basis. If the first
characters on two lines are the same, sort looks at the second characters to

determine the proper sorted order. If the second characters are the same,

sort looks at the third characters. This process continues until sort finds

a character that differs between the lines. If the lines are identical, it

doesn't matter which one sort puts first. The sort command in this example

only needs to examine the first three letters (at most) of each line. Sort
displays a list that is in alphabetical order by first name.

$ sort list

Alice MacLeod 94114
David Mack 94114

Jack Cooper 94072

Janet Dempsey 94111
Richard MacDonald 95510

Tom WinsLrom 94201
Toni Barnett 95020

sort can skip any number of line-fields and characters on a line before

beginning its comparison. Blanks normally separate one line-field from

another. The next example sorts the same list by last name, the second
line-field. The +I argument indicates that sort is to skip one line-field

before beginning its comparison. It skips the first-name field_ Because
there is no second pointer, the sort-field extends to the end of the line.

Now the list is almost in last name order, but there is a problem with "Mac".

$ sort +1 list
Toni Barnett 95020

Jack Cooper 94072

Janet Dempsey 94111
Richard MacDonald 95510

Alice MacLeod 94114
David Mack 94114

Tom Winstrom 94201

In the example above, MacLeod comes before Mack. sort found the sort-fields

of these two files the same through the third letter ("Mac"). Then it put L

before k because it arranges lines in the order of ASCII (or other)
character codes. In this ordering, uppercase letters come before lowercase
ones and therefore L comes before k.

The -f option makes sort treat uppercase and lowercase letters as equa]s,
and thus fixes the problem with MacLeod and Mack.

$ sort -f +1 list
Toni Barnett 95020

Jack Cooper 94072



260 Ti 11! I)I_SIGN AND EVAI .UATION Ol: ON-I.INF. 1II!i P SYSTIiMS

Janet Dempsey 94111
Richard MacDonald 95510
David Mack 94114
Alice Macl.eod 94114
Tom Winstrom 94201

The next example attempts to sort list on the third line-field, the zip
code, sort does not put the numbers i_ order, but puts the shortest name
first in the sorted list and the longest name last. With the argument of
_2, sort skips two line-fields and counts the SPACEs after the second
line-field (last name) as part of the sort-field. The ASCII value of a
SPACE character is less than that of any other printable character, so sort
puts the zip code that is preceded by the greatest number of SPACEs first,
and the zip code that is preceded by the fewest SPACEs last.

$ sort +2 list
David Mack 94114

Jack Cooper 94072
Tom Winstrom 94201
Toni Barnett 95020

Janet Oempsey 94111
Alice MacLeod 94114
Richard MacDonald 95510

The -b option causes sort to ignore leading SPACEs. With the -b option, the
zip codes come out in the proper order (see following example).

When sort determines that MacLeod and Mack have the same zip code, it
compares tile entire lines. The Mack/MacLeod problem crops up again because
the -f option is not used.

$ sort -b +2 list

Jack Cooper 94072
Janet Dempsey 94111
Alice MacLeod 94114

David Mack 94114
[om Winstrom 94201
Toni Barnett 95020
Richard MacDonald 95510

The next example shows a sort command that not only skips line-fields, but
skips characters as well. The +2.3 causes sort to skip two line-fields and
then skip three characters before starting its comparisons. The sort-field
is, and the list below is sorted in order of, the last two digits in the zip
code. (The -f option is included to take care of MacLeod and Mack.)

$ sort -f -b +2.3 list
Tom Winstrom 94201
Richard MacDonald 95510

Janet Dempsey 94111
Alice MacLeod 94114
David Mack 94114
Toni Barnett 95020

Jack Cooper 94072

The next example uses a different file, list2, to demonstrate the -n option,
This file contains text that represents numbers and includes minus signs and
decimal points.

$ cat list2
.7
1.1
-11
10.0

0.5



Tllli TWO UNIX MANUAI.S 261

-1.1

$

When sort processes this list of numbers, it sorts them according to the
machine collating sequence. They are not put in arithmetic order.

$ sort list2
-I.I
-11
.7
0.5
1.1
10.0

The -n option causes sort to put the list of numbers -- including symbols --
in its proper, arithmetic sequence.

$ sort -n list2
-II
-1.1
0.5
.7
1.1
10.0

The final sort example demonstrates a more complex use of options and
arguments, cat displays the "words" file used in this example.

$ cat words

apple

pear
peach

apple

Apple
Pear

prune
Plum

peach

orange

pear
plum

pumpkin
$

The following sort command sorts "words" and displays only one copy of each
line (-u option). The arguments cause sort to evaluate each line twice.

$ sort -u +Of +0 words

Apple

apple

orange

peach
Pear

pear
Plum

plum

prune

pumpkin

Just as the argument +I causes sort to skip one line-field, +0 causes sort
to skip zero fields; sort examines the first line-field.

The +Of argument causes sort to evaluate the first line-field through the
end of the line (the entire word) as though it were lowercase. The -f option

is used to fold uppercase into lowercase and is not preceded by a hyphen



262 'FILE 1)I?,SIGN AND I'VAI UATION O1: ON-I,INE IIF,1.P SYSTEMS

because it follows a field specifier. The second argument, +0, evaluates

each word, differentiating between uppercase and lowercase letters. The

result is a list of all the words, in alphabetical order, differentiating

between upper- and lowercase letters, displaying only one copy of each word.



A 131(11iI:INIROI)U('TION/'0 I,',I!(;Ri:SSION ANAI,YSIS 263

Appendix E
A Brief Introduction to Regression Analysis

In this appendix, I will outline the basic ideas of regression analysis as they are relevant to

interpreting the data presented in this thesis. This is not intended to serve as a general introductory

text on regression analysis; for that, any good introductory statistics textbook should suffice. Rather,

the idea here is to present an intuitive picture of regression as it is used in this thesis.

E.1. Simple regression

Often, in collecting data regarding a simple phenomenon, the data will suggest an underlying trend

that is hard to define directly from the data. In this picture, for example, there appears to be a clear

relationship between the x and y values graphed:

20

18 :1:

16 :t:

14 :1:

12 ++ +
10

+
8 ,

6 _t
4=

4

2 1:
I I I I I I I ' = '

0 1 2 3 4 5 6 7 8 910

It seems likely, looking at this data, that there is a direct relationship between the two variables

graphed. It is generally usefhl to express this relationship as a function Y = f_x),but it is not always

obvious what that function is. Regression is a technique which, given a certain class of functions,

finds the one which "best fits" the data. In particular, linear regression, which is most commonly

used, only examines those functions of the form Y = c + kx, so theftthe purpose of the regression

pr_x:cssis to select the best values for the constants c and k.



264 '1111_I)I!SIGN AN[) I_VAI.UATION O1:ON-I.INIi l ll-I,P SYST!!MS

The process by which this selection is made is called the method of least squares, which is explained

in any standard statistics textbook. Suffice it to say that the technique finds the best linear equation

for the data, where "best" means that the sum of the squares of the differences on the y axis are

minimized. In the following picture, the data shown previously is shown along with a graph of its

regression equation:

/
i

:16

14!

12 + +
10

8

6

4

2
t _ _ _ I I I I I I

0 1 2 3 4 5 6 7 8 910

Here, the equation of the regression line is simply y= 2x.

The idea behind this method is that the regression equation approximates the "real" underlying

rdationship between the variables, which can be obscured by experimental error and variation in the

data. qlae danger of using this technique is that regression equations can be arbitrarily poor fits for

the data; even if there is no real relationship, the regression equation will find a "best" relationship.

However, the standard deviation of a coefficient in the regression equation is a simple and reliable

measure of the significance of the effect of the associated independent variable. In trying to

understand whether or not a given coefficient's value indicates a significant effect, we must compare

the size of the coefficient with its standard deviation. The ratio of the coefficient to the standard

deviation is know as the T-ratio. The larger the T-ratio, the more confident we can be about the

significance of the effect observed. For example, a T-ratio of 1.95 or more indicates a confidence

level of 95% or more; that is, the chances of the observed effect being due merely to chance

(coincidence) is less than i in 20.



A BRII-I: IN['ROI)[SL"IION 'iO RIiGRI_SS[ON ANA[.YS1S 265

E.2. Multivariate Regression

In genuinely interesting applications, researchers rarely study phenomena so simple that a single

dependent variablc and a single independent variable are the only ones involved. Instead, they will

typically have several independent variables and one or more dependent variables, in the discussion

that follows, wc will assume only one dependent variable, y, and n independent variables, x1, x2....

xn. The goal of the linear regression analysis is to produce an equation of the form:

y = c o + ClX1 -F c2x 2 + ... + CnXn

The method used here is completely analogous to the two-dimensional method outlined in the

previous section, except that the computation is more difficult. Again, the values of the constants c.
1

are selected to best model the data, and their standard deviations provide a measure of their

significance.

E.3. Indicator Variables

The situation becomes slightly further complicated when one of the variables observed does not

take on continuous numeric values. For example, in the experiments described in this thesis, one of

the independent variables was the subject: obviously, dit'tbrent subjects performed differently, and it

was important to be able to differentiate the effect of subject variation from the effect of help system

variation. Unfortunately, simply giving each subject a numeric value such as "1" or "17"' is unlikely

to lead to a meaningful regression equation, given that the numbers assigned are arbitrary.

Instead, we can create indicator variables for each of the different subjects. Thus, in an experiment

with four subjects, we might create four indicator variables S1, S2, Sy and S4. For each subject, one

indicator variable will be 1 and the rest will be 0. Thus, for example, for the third subject, Sy S2, and

S4 would be 0, while S3 would be i. Given that only one of these four variables is non-zero, the

coefficient of each of these variables in the final regression equation is an indication of the effect of

the relevant discrete condition -- in this case, the effect of a certain subject -- on the dependent

variable.

For a very simple example, imagine an experiment in which we observe three people, John, Mary,

and Bill, each eating two scoops of ice cream, ch¢x:olate and vanilla. If we let xI be an indicator

variable for John, x2 for Mary, x3 for Bill, x4 for chocolate, and x5 for vanilla, wc might imagine tl._at

an equation of the following form might predict the time t that it takes an individual to eat a scoop of

ice cream:



266 TI IV I)I:SIGN AND F,VA!UAHON OI: ON-I INI! 1I1!1,P SYSTI!MS

t = CO -+-ClX 1 + c2x 2 -]- C3X3 -t- c4x 4 q- c5x 5

However, for technical reasons, this is not precisely the way such analyses are conducted. It turns

out that, to obtain significant and meaningful results, not all of the indicator w_riablcs should be

included in the regression equation: rather, one of each set of indicator variables should be omitted to

allow the analysis a sufficient number of degrces of freedom. Thus, more realistically, a regression

equation for the experiment just described might look more like this:

t -- c o q- ClX1 + C2x2 -t- C3X3

Here, the indicator variable xI is 1 if the subject is John, and x2 is 1 if the subject is Mary; if both x1

and x2are zero, the subject is Mary. Similarly, x3 is 1 for chocolate and 0 for vanilla. In general, in

such an equation, the constant co reflects the predicted value of the dependent variable when all of

the omitted indicator variables arc 1. In this case, co is the predicted time it would take for Bill to eat

vanilla ice cream. A complete table of the possible values of the variables and their meaning is found

in the Table F,-1. Note that certain indicator variables are mutually exclusive: it is impossible for a

subject to be both John and Mary, for example, rcgardless of what flavor the ice cream is.

Table E-I: Meanings of Indicator Variables in Toy Regression Example

x] x2 x3 Meaning

0 0 0 Bill eats vanilla.
0 0 1 Bill eats chocolate.

0 l 0 Mary eats vanilla.
0 1 1 Mary eats chocolate.
1 0 0 John eats vanilla.
1 0 1 John eats chocolate.

1 1 0 Impossible situation.
1 1 1 Impossible situation.



A BRIEI: INH_ODUCi'ION TO RI!GRF.SSION ANAI,YS1S 267

E.4. Reading the regression results from Chapter 7

In several different tables in Chapter 7, the results of a multivariate regression analysis are

displayed. The first part of each of these tables is the regression equation, which should, be

interpreted as described above. For each of these equations, the baseline help system, the first

subject, and the first task do not have indicator variables; thus the constant in the equation predicts

the log time for the first subject using the first task and the first help system. (l.og time is used

instead of actual time to reduce the effect of minor variations.)

After this equation, which summarizes the regression results, comes a table of values with one .line

for each of the regression variables. Each such line gives the variable, its meaning as an indicator

variable, its coefficient from the regression equation, and the "T ratio". The T ratio is simply the

regression coefficient divided by its standard deviation. This ratio gfives a measure of the signficance

of the coefficient; anything with absolute value over 1.95 is significant with a confidence level p<.05

(95%). Thus, if the T ratio is over 1.95 it is reasonably certain that the condition indicated by that

variable significantly increases the dependent variable -- in this case, the time to execute the task. (A

T ratio over 1.65 indicates a confidence level p<.l (90%), a rather less reliable indicator.) Similarly, a

T ratio less than -1.95 indicates a significant decrease in task execution time.

qqae regression tables presented in this thesis show only the comparisons in which the indicator

variable omitted is the man/key (baseline) help system. This raises the question of the comparability

of the other help systems. Table 7-3, on page 89, for example, shows the following T-ratios for the

coefficients corresponding to the other help systems:

System T-ratio Coeficient
Hybrid -1.53 -0.2675
ACRONYM -2.15 -0.3668
Tutor -3.52 -0.6095

English -1.65 -0.3010

This suggests that all of the systems are significantly better than the baseline system. However, the

much larger T-ratio for the human tutor, -3.52, suggests that the tutor is significantly better than the

other systems as well. The regression analysis as presented does NOT, however, prove that this is the

case. but merely suggests it. However, it turns out that the trends suggested in this manner are

generally borne out (for reasonable data) by fi_rther analysis. In this case, fi)r example, running the

regression with the human tutor as the omitted indicator variable yields the following T-ratios:

System T-ratio Coeficient
Baseline 3.52 0.6095



268 Ti11:.I)liSIGNANDI'VAI,UATIONO1:ON-1,1NI!ll!!l,!'SYSTFMS

Hybrid 1.39 0.3420
ACRONYM 1.00 0.2427

English 1.27 0.3085

These T-ratios indicate a likely difference, though not as strongly as is suggested by the differences

in the first table. The difference in significance is entirely an artifact of the experimental design.

Remember that the T-ratio is simply the ratio of the coefficient to the standard deviation. Although

the coefficients interact strictly linearly -- that is, the coefficient for ACRONYM, 0.2427, in the

second table, is the differcnce between the ACRONYM and Tutor coefficients in the previous table

-- the standard deviations do not. This is because there is more data for the baseline system

(man/key) than for any other systcm, given its use as a baseline in the experiments. Since there is

more data available for man/key than for other systems, it is natural that confidence levels be

somewhat higher for those comparisons that involve it than for those that do not. Also, comparing,

for example, ACRONYM to the tutor involves an extra bit of indirection in the data; no single

subject actually used both of those two systems, so the comparison is inherently somewhat riskier.

Nonetheless, the different fonns of the.regression analysis tend to back up the conclusions of the

initial analysis, albeit at slightly reduced levels of significance. For example, the most shaky finding,

in this analysis, is that the human tutor is better than ACRONYM. 'rhis conclusion has a probability

of just over 1 chance in 4 of being incorrect. It would very likely be made firmer by increasing the

number of subjects studied or by running subjects with a more direct comparison between the two

systems.

The regression analysis reported in this thesis was conducted using the MINITAB statistical

analysis program [104]. For more infonnation on regression analysis in general, consult an

appropriate textbook.



BIBIJOGRAPI IY 269

Bibliography

[1] Ambrozy, Denise.

On Man-Computer Dialogue.
International Journal of Man-Machine Studies 3(4):375-383, 1971.

[2] Anderson, John R.
I.earning to Program.
year unknown.

[3] Anderson, John R., Robert Farrell, and Ron Sauers.
Learning to Plan in LISP.
Technical Report, Carnegie-Mellon University Department of Psychology, 1982.

[4] Ball, E. and P. Hayes.
A Test-Bed for User Interface I)esigns.
In Proceedings, Human Factors In Computer Systems. March, 1982.

[5] Bannon, I.iam and Claire O'Malley.
Problems in F.valuation of Human-Computer Interfaces: A Case Study.
HMI Project, University of California at San Diego, March, 1984.

[6] Bates, Madeleine, and John Vittal.
Tools for the Development of Systems for Human Factors Experiments: An

Example for the SSA.
1EEE Transactions on Systems, Man, and Cybernetics SMC-12(2): 133-148,

March/April, 1982.

[7] Black, J. and T. Moran.
I.earning and Remembering Command Names.
In l'roceedings, Human Factors In Computer Systems. March, 1982.

[8] Borenstein, Nathaniel.
The Evaluation of Text Editors: A Critical Review of the Roberts and Moran

Methodology Based on New Experiments.
In l'rocedings of Cltl '85. 1985.

[9] Borenstein, Nathaniel and James Gosling.

UNIX Emacs as a Test-bed for User Interface Design.
1985.

in preparation.



270 Till:. i)I_SIGN AND II'VAI,UA'I'ION OF ON-IJNE flI-I,P SYSTEMS

[10] Bott, Ross A.
A Study in Complex I.earning: Theory and Methodologies.
PhD thesis, U. C. San Diego, March, 1979.

[11] Bramwell, Bob.
BROWSE: An On-line Manual and System Without an Acronym.
SIGDOC Newsletter, 1984.

[12] Bramwell, Bob.
Browsing Around A Manual.
In Canadian Information Processing Society Session "84Proceedings, pages 438-451.

1984.

[13] Campbell, Donald T., and Julian C. Stanley.
Experimental and Quasi-Experimental Designs for Research.
Houghton Mifflin Company, 1966.

[14] Card, Stuart K., Thomas P. Moran, and Allen Newell.
The Psychology of ttuman-Computer hlteraction.
Lawwrence Erlbaum Associates, Hillsdale, NJ, 1983.

[15] Cherry, Lorinda L.
Computer Aids for Writers.
SIGPLAN Notices :62-67, June, 1981.

[16] Cherry, L. L. and W. Vesterman.
Writing Tuols -- The S'FYLF. and I)ICTION Programs.
year unknown.

[17] Christensen, Margaret.
Background for the Design of an Expert Consulting System for On-line Help.
October, 1984.

Thesis proposal, Temple University.

[18] TOPS- 10On- Line Help System
year unknown.
HLP:HELP.HLP on CMU-CS-A.ARPA.

[19] CMU LISP On-line help
year unknown.
on CMU-CS-A.ARPA.

[20] Personal Computing on the Vic-20: A Friendly Computer Guide
Commodore Electronics, Ltd., 1982.

[21] Coutaz, Joelle.
A Framework for the SPICE Help System.
1985.

[22] TOPS-20 User's Guide
Seventh edition, Digital Equipment Corporation, Marlboro, Massachusetts, 1980.



BIB1JOGRAPI1Y 271

[23] l)oherty, Walter J.

System Performance and user Behaviour.

IBM Thomas J. Watson Research Center. Yorktown Heights, NY, 1981.

[24] I)oherty, Walter J. and R. P. Kelisky.
Managing VM/CMS Systems for User Effectiveness.
IBM Systenzs .lourna118(1), 1979.

[25] l)oherty, Walter J., and Arvind J. Thandhani.
The FxzonomicValue of Rapid Response Time.

IBM Thomas J. Watson Research Center. Yorktown Heights, NY, year unknown.

[26] Donner, Marc D. and David Notkin.
Flexible Systems: Customization and Extension.
1985.

[27] Draper, Stephen W.
The Nature of Expertise 01 UNIX.
HMI Project, University of California at San Diego, March, 11984.

[28] l)uffy, Thomas M., and Paula Kabance.

Testing a Readable Writing Approach to Text Revision.
Journal of Educational Psychology 74(5):733-748, 1982.

[29] I)unsmore, H. E.

Designing an Interactive Facility for Non-Programmers.
In t'roceedmgs cfACM-8(L pages 475-483. 1980.

[30] l)urham, lvor.
The ('M U Plot Manual

Carnegie-Mellon University Computer Science Department, 1981.

[31] Durham, lvor, David A. Lamb, and Jamcs B. Saxe.
Spelling Correction in User Interfaces.
Communications of the ACM 26:764-773, 1983.

[32] I)zida, W., S. lqerda, and W. D. Itzfeldt.
User-Perceived Quality of Interactive Systems.
IEEE Transactions on Software Engineering SE-4(4), 1978.

[33] Felker, Daniel B., Frances Pickering, Veda R. Charrow, V. Melissa Holland, and
Janicc C. Redish.

Guidelinesfor Document Designers.
American Institutes for Research, Washington, I)C, 1981.

[34] Fenchel, Robert S.

Integral Helpfi,,r Interactive Systems.
Phi) flaesis,UCI,A, 1980.

[35] Fenchel, Robert S. and Gerald Estrin.

Self-Describing Systems Using Integral Help.
II:'H'. 7)'ansactions on A),stems,Man, and ( ),bernetics SMC- 12(2):162-167,

March/April, 1982.



272 rill;. I)ESIGNANI) IiVAIUAIION O!:ON-I.INI!111';i,PSYSTI:MS

[36] Feyock, Stefan.

Transition Diagram-based CA l/HELP Systems.
International,lournal of Man-Machine Studies 9:399-413, 1977.

[37] Finin, Timothy W.
Providing Help and Advice in Task-Oriented Systems.
In I.ICA183 Proceedings, pages 176-178. 1983.

[38] Fischer, Gerhard, Andrcas l,cmkc, and Thomas Schwab.
Knowledge-based Help Systems.
In Proceedings of CHl '85, pages 161-167. 1985.

[39] Foster, Mike.
private communication.
1981.

[40] Gencsereth, Michael.
An Automated Consultant for MACSYMA An Automated Consultant for

MACSYMA.

In I.ICA1 77 Proceedings, pages 789. 1977.

[41] Girill, T. R. and Clement H. Luk.
DOCUMENT: An Interactive, Online Solution to Four Documentation Problems.
Communicatio,ls of the ACM 26(5):328-337, May, 1983.

[42] Glasner, Ingrid I)., and Philip J. Hayes.

Automatic Construction of l:'xplanation NetworksJbr a Cooperative User Interface.
Technical Report CM U-CS-81-146, Carnegie-Mellon University I)epartment of

Computer Science, November, 1981.

[43] Glushko, R. J., and M. H. Bianchi.

On-line Documentation: Mechanizing l_)evelopment, Delivery, and Use.
The Bell System Technical Journal 61(6): 1313-1323, July-August, 1982.

[44] Gosling, James.
UNIX Emacs Manual
1983.

[45] Gould, J. and N. Grischkowsky.
I)oing the Same Work with Hardcopy and with CRT Terminals.
Human l:actors26(3), 1984.

[46] Haas, Christina, and John R. Hayes.

Reading on the Computer: A Comparison of Staodard and Advanced Compuler
Displa),and Hard Copy.

Technical Report CI)C Tech Report #7, Carnegie-Mellon University
Communications Design Center, February, 1985.

[47] Haas, Christina, and John R. Hayes.
Effects (f Text Display Variables in Reading Tasks: Computer Screens vs. Hard

Copy.

'l'cchnicai Report CI)C Tech Report #3, Carnegie-Mellon University
Communications i)esign Center, March, 1985.



B_ JOGRAH_Y 273

[48] Halasz, F., and 'in.Moran.
Analogy Considered Harmful.
In Proceedings; ttuman Factors In Computer Systems. March, 1982.

[49] Hanson, Stephen Jose, Robert E. Kraut, and James M. Farber.
Interface Design and Multivariate Analysis &UNIX Command Use.

ACM Transactions oil OJficeInformation Systems 2(1):42-57, March, 1984.

[50] Hayes, Philip J.
Uniform Help Facilities ['ora Cooperative User Interface.

In National Computer Conference Proceedings, pages 469-474. AF1PS, 1982.

[51] Hayes, Phillip J.
Executable Interface Definitions Using b_rm-Based lnterJbce Abstractions.
Technical Report CMU-CS-84-110, Carnegie-Mellon University Computer Science

1)epartment, March, 1984.

[52] Hayes, Phil, Rick Lerner, and Pedro Szekely.
Cousin Manual for End Users.
1983.

[53] Hayes, Phillip J., Pedro A. Szekely, and Richard A. Lerner.
Design AI,ternatives for User Interface Management Systems Based on Experience

with COUSIN.

In CHI '85Proceedings. April, 1985.

[54] Heckel, Paul.
The l:TemeHtsof t:riendly Software Design.
Warner Books, 1984.

[55] Houghton, Raymond C., Jr.
Online Help Systems: A Conspectus.
CACM 27(2): 126-133,February, 1984.

[56] Howe, Adele.
HOW? A Customizable, Associative Network Based Help Facility.
1983.

Senior Design Project.

[57] Huck, Schuyler W. and Howard M. Sandier.
Rival Hypotheses: Alternalive Interpretations of Data Based Conclusions.
Harper & Row, New York, 1979.

[58] IBM I/'irtualMachine/System Product: CMS Primer
First edition, IBM, 1982.

[59] System Productivity Facility Dialog Management Services
IBM, year unknown.

[60] Jacob, Robert J. K.
Using Formal Specifications in the Design of a Human-Computer Interface.
CA('M 26(3), April, 1983,



274 Till! I)i!SIGNANDFNAI,UATIONOl_ON-IINI_III'I,PSYSTFMS

[61] Kelley, J. F.

A n Intcrface Design Methodology for User- friendly Natural Language Office
Information Applications.

ACM Transactions on Office Information _S)'stems2(1), March, 1984.

[62] Kennedy, T. C. S.
The Design of Interactive Procedures for Man-Machine Communication.

International Journal of Man- Machine Studies 6(3):309-334, 1974.

[63] Kennedy, T. C. S.

Some Behavioral Factors Affecting the Training of Naive Users of an Interactive
Computcr System.

International Journal of Man-Machine Studies 7(6):817-834, 1975.

[64] Kernighan, Brian W. and John R. Mashey.
The UNIX Programming Environment.
Computer :12-22, April, 1981.

[65] Kernighan, Brian W. and P. J. Plauger.
Software Tools.
Addison-Wesley Publishing Co., Reading, Massachusetts, 1976.

[66] Kunze, John.

The Berkeley UNIX Help System.
1984.

on-line manual entry.

[67] Lamb, l)avid Alex.

RdAlail Message Management 3_,ston: User's Guide and Reference
Scventh edition, CMU Computer Science I)epartment, Pittsburgh, 1982.

[68] Lampson, Butler.
Hints for Computcr System Design.
IEEE Software, January, 1984.

[69] Lang, Kathy, Robin Auld, and Terry Lang.
The Goals and Methods of Computer Users.
International Journal of Man-Machine Studies 17(4):375-399, 1982.

[70] Loo, Robert.

Individual I)ifferences and the Perception of Traffic Signs.
Human Factors 20(1):65-74, 1978.

[7I] Lowerre, B. T.

The HARPY ,SpeechRecognition System.
Technical Report, Carnegie-Mellon University Computer Science Department,

April, 1976.

[72] Mack, Robert 1,, Clayton H. l,ewis, and John M. Carroll.

I_earning to Use Word Processors: Problems and Prospects.
ACM Transactions on Office Information Systems 1(3):254-271, July, 1983.



BII_I.IOGRAI'IIY 275

[73] Magers, Celeste S.

An Experimental Evaluation of On-line Help for Non-Progr_unmers.
In C'tll "83Proceedings, pages 277-281. 1983.

[74] Mantei, Marilyn and Nancy I-taskell.

Autobiography of a First-Time Discretionary Microcomputer User.
In (.'HI '83 Proceedings, pages 286-290. 1983.

[75] Moran, Thomas P.

The Command Language Grammar: A Representation for the User Interface of
Interactive Computer Systems.

lnternatiotial Journal of Man-Machine Studies 15(1):3-50, 1981.

[76] Moran, Thomas P.
An Applied Psychology of the User.

ACM Computing Surveys 13(1), March, 1981.

[77] Mudge, J. C..

Human Factors in the Design of a Computer-Aided Instruction System.
Phi) thesis, University of North Carolina at Chapel Hill, June, 1973.

[78] Nicholson, Raymond S.

Why Interactive Computing Systems are Sometimes not Used by People who
Might Benefit from qqaem.

International,lournal of Man-Machine Studies 15:469-483, 1981.

[79] Norcio, A.

Indentation. l)ocumentation, and Programmer Comprehension.
In I'roceediHgs,Human l,'actorsIn Computer Systems. March, 1982.

[80] Norman, D.
The Truth About UNIX: The User Interface is Horrid!

year unknown.

[81] O'Malley, C., P. Smolensky, L. Bannon, E. Conway, J. Graham, J. Sokolov, and
M. I,. Monty.
A Proposal for User Centered System Documentation.
In CHI '83Proceedings, pages 282-285. 1983.

[82] Palay, Andrew ,I., and Mark S. Fox.

Browsing Through Databases.
Information Retrieval Research.
Butterworth and Co., Ltd., London, 1981.

[83] Peters. Torn.
private communication.
1984,

[84] Posncr, John, JcffHill, Steven G. Miller, Ezra Gotthcil, and Mary I,ynn Davis.
l,otus 123 User's Manual

Lotus Development Corporation, 1983.



276 "!'111'_i)i!SIG N AN I) i:.VA135AI'ION O1: ON-1.1NI_ 111:1P SYSTI-MS

[85] Price, l.ynne A.

Thumb: An Interactive 'Fool for Accessing and Maintaining Text.
IEEE Transactions on Systems, Man, attd Cybernetics SMC-I 2(2): 155-161,

March/April, 1982.

[86] Rashid, R. F.

All Inter-process Communication Facilityfor UNIX.
Technical Report CM U-CS-80-124, Carnegie-Mellon University Computer Science

l)epartment, February, 1980.

[87] Reddy, 1). R. ;tnd the Computer Science I)epartment Speech Group.
Work ing Papers in Speech Recognition I V-- The Hearsay-II System.
Technical Report, Carnegie-Mellon University Computer Science Department,

February, 1976.

[88] Reisner, Phyllis.

Human Factors Studies of Database Query l,anguages: A Survey and Assessment.
ACM Computing Surveys 13(1), March, 1981.

[89] Relles, Nathan and l_ynne A. Price.
A User Interface for Online Assisumce.

In Procedings of the Fifth Cot¢erence on Software Engineering, pages 400-408.
1981.

[90] Relies, Nathan, and Norman K. Sondheimer.
A Unified Apporach to Online Assistance.
In Nat iona/ ('omputer Conference t'tvceedings, pages 383-387. AF1PS, 1981.

[91] Rich, Elaine.
Programs as l)ata for their Help Systems.
In National Computer Conference Proceedings, pages 481-485. AFIPS, 1982.

[92] Rich, Elaine.
Users Are Individuals: Individualizing User Models.
International Journal of Man-Machine Studies 18(3):199-214, 1983.

[93] Roberts, Teresa L.
Evaluation of Computer Text Editors.
Phi) thesis, Stanford University, 1979.

[94] Roberts, T. and T. Moran.
Evaluation of Text Editors.

In Proceedings, Human Factors In Computer Systems. March, 1982.

[95] Roberts, Teresa I,. and Thomas P. Moran.
The Evaluation of Text Editors: Methodology and Empirical Results.

CACM, April, 1983.

[96] Robertson, C. Kamila.
Experimental Evaluation of an Interactive Information Processing Aid for an

Emergency Poison Center.
Behavioral Science 26, 1981.



BIIflJOGRAPIIY 277

[97] Robertson, C. Kamila, and Robert Ak_yn.
Experhnental Evaluation of Toolsfor 72,aching the ZOG Frame Editor.

Technical Report CM U-CS-82-122, Carnegie-Mellon University Department of
Computer Science, May, 1982.

[98] Robertson, C. Kamila, and Allen Newell.
Experimental Evaluation of Five Techniques for Teaching for the ZOG Frame

Editor.
1983.

[99] Robertson, C. Kamila, 1)onald L. McCracken, and Allen Newell.
Experimental Evaluation ¢f the ZOG Frame Editor.
Technical Report CMU 'I'R 81-112, Carnegie-Mellon University, 1981.

[100] Robertson, G., D. McCracken, and A. Newell.

The ZOG Approach to Man-Machine Communication.
Technical Report CM U-CS-79-148, Carnegie-Mellon University, October, 1979.

[101] Robertson, G., D. McCracken, and A. Newell.
The ZOG Approach to Man-Machine Communication.
International Journal of Man-Machine Studies 14(4):461-488, 1981.

[102] Rosenberg, J.
Evaluating the Suggestiveness of Command Names.
In Proceedings, Human Factors In Computer 5),stems. March, 1982.

[103] Rothenberg, Jeff.
An Intelligent Tutor: On-line Documentation and tlelp for a Military Message

Service.

Technical Report ISI/RR-74-26, USC-ISI, May, 1975.

[104] Ryan, Thomas Arthur.
Minitab Student Handbook
1976.

[105] Scelza, Donald A.
The Shepherd File Management and Documentation System User Manual
CMU Computer Science Department, Pittsburgh, 1979.

[106] Sharer, Steve.
Ci UNIX manual entry
1983.

[107] Shneiderman, Ben.
Software Psychologo:

Winthrop Publishers, Cambridge, Massachusetts, 1979.

[108] Shneiderman, Ben.
ttuman Factors Issues of Manuats, Online Help, and Tutorials.

Technical Report CS-TR-1446, Department of Computer Science, University of
Maryland, September, 1984.



278 Ti 11.:DESIGN AND I!VAI.UATION O1:ON-I INI,_l llil P SYSTI!MS

[109] Shrager, Jeff, and Tim Finin.

An Expert System that Vohmteers Advice.
In AAA1-82, pages 339-340. 1982.

[110] Smith, Huston.
The Religions of Man.
Harper & Row, New York, 1958.

[111] Smith, l)avid Canfield, Charles lrby, Ralph Kimball, and Eric Harslem.
The STAR User Interface: An Overview.

In National Computer Conference Proceedings, pages 515-528. AFIPS, 1982.

[112] Sobell, Mark.
A Practical Guide to the UNIX System.
The l_enjamin/Cummmgs Publishing Company, Menlo Park, California, 1984.

[113] Sondheimcr, Norman K. and Nathan Relies.

Human Factors and User Assistance in Interactive Computing Systems: An
Introduction.

IEEE Transactions on Systems, Man, and Cybernetics SMC-12(2): 102-107, March-
April, 1982.

[114] SprouU, l.ee S., Sara Kiesler, and David Zubrow.
Encountering an Alien Culture.
Journal of Social Issues, 1984.
in press.

[115] Stallman, Richard M.
F,MACS Manualfor TOPS-20 Users
MI'I A1 l.aboratory, 1981.

[116] Teitelman, Warren.
Interlisp Reference Manual
Xerox Palo Alto Research Center, year unknown.

[117] Temin, Aaron 1.ehman.
The Question Answering Module in an Automated Natural Language Help System

for the Text-Formatter Scribe.
1982.

Thesis Proposal, University of Texas at Austin.

[118] UNIX Programmer's Manual

Seventh Virtual Vax-11edition, Computer Science l)ivision, Department of
Electrical Engineering and Computer Science, University of California,
Berkeley, 1981.

[119] Walker, Janet.
Symbolics Sage: A l)¢nzumentation Support System.
In Proceedings lEEK Spring CompCom 84. 1984.



BIBI ,lOGRAPI IY 279

[120] Walker, Janet.

hnplementing l)ocumentation and Help Online.
1985.
CHI '85 Tutorial Notes.

[121] Weinberg, Gerald M..

Ttle Psychology of Computer Programming.
Van Nostrand Reinhold Co., New York, 1971.

[i22] Wilensky, Robert.
Talking to UNIX in English: An Overview of an On-line UNIX Consultant.
Al Magazine 5(1):29-39, Spring, 1984.

[123] Wilson, E. Bright, Jr.
An Introduction to Scientific Research.
McGraw-Hill, New York, 1952.

[124] Witten, lan H. and Bob Bramwell.
A System for Interactive Viewing of Structured Documents.
CACM 28(3), March, 1985.

[125] Wood, W. G., and D. G. Martin.
Experimental Method.
The Athlone Press, London, 1974.




