CMU-CS-85~151

The Design and Evaluation
of On-line Help Systems

Nathaniel S. Borenstein
April 27, 1985

Submitted in partial fulfillment of the requircments for the degree of

Boctor of Philosophy in Computer Science at Carncgie-Mellon University

Copyright © 1985 Nathaniel S. Borenstcin

This research was sponsored by a Graduate Fellowship from the National Science Foundation, and
by a Forgivable Loan from the General Electric Foundation. The views and conclusions contained
in this document are those of the author and should not be interpreted as being the views and con-
clusions of the National Science Foundation or of General Electric.

To Debbie and Stan Borenstein

1 would repay the bounty they have given me,
but it is as the sky: it can never be approached.

-- Huston Smith [110]

LIST OF TABLES

Table 6-1:
Table 6-2:
Table 7-1:
Table 7-2:
Table 7-3:
‘Table 7-4:
Table 7-5:
Table 7-6:
‘Table 7-7:
Table 7-8:
Table 7-9:
Table 7-10:
Table 7-11:
Table 7-12:
Table 7-13:
Tahle 7-14:
Table 7-15:
Table 7-16:
Table E-1:

List of Tables

Summary of Tasks in the Experiments

Help Systems Studied in the Experiments
Summary of Novice Experiments

Summary of Expert Experiments

Regression Analysis of Novice Data

Regression Analysis of Expert Data

Comparison of Three Measures of Novice Variation
Comparison of Three Measures of Expert Variation
Readability Analyses of the Two UNIX Manuals
List of Novice Tasks, Ordered as in Figure 7-5

List of Expert Tasks, Ordered as in Figure 7-6

Novice Regression Analysis, Omitting Within-Subjects Comparisons
Expert Regression Analysis, Omitting Within-Subjects Comparisons

The Effect of Novice Subject Variation
The Effect of Expert Subject Variation
Short-term Retention of Solutions by Novices
Short-term Retention of Solutions by Experts

Subjective User Preferences: ACRONYM versus the hybrid
Meanings of Indicator Variables in Toy Regression Example

vii

74
79
87
87
89
90
91
91
93
9
100
104
105
106
106
107
109
109
266

ABSTRACT 1

Abstract

On-line help is a vital part of nearly every computer system of any significant size, yet it is poorly
understood and gencerally poorly implemented. The primary goal of this rescarch was to discover as
much as possible about how on-line help systems should be built. Several results are presented in the
thesis.

First, the feasibility of easily building more general and powerful help systems than are
commonly available is demonstrated. A prototype system, including nearly all the features included
in any recal-world help system, and integrating them in a manner not found in any such system, was
built in just a few months without any spectacular tricks of implementation. The prototype system
runs well and quickly, cven with a very large databasce of help information, so that there is simply no
reason not to expect practical help systems to live up to its standards.

Second, controfled experiments comparing various alternative help systems were couducted.
These experiments suggest that the quality of help texts is far more important than the mechanisms
by which those texts are accessed. The experiments also suggest that. despite the well-documented
fact that people read and comprehend better from printed texts than from computer screens, it is at
lcast possible to compensate for this fact through sophisticated help access mechanisms. Thus,
on-line help with no printed manual may be at least as useful as a more traditional manual-based
system, and there are reasons to suspect that it can be even better. Additional experiments, using a
simulated natural language interface, cast doubt on the usefulness of natural language in a help
system.

In addition to the concrete results summarized above, the thesis makes several other
contributions. A general taxonomy of on-line help systems is developed. and a survey of the
literature on help systems relates existing help systems to that taxonomy. Further, the design and
evaluation of help systems is considered as an example of the more general problem of designing and
evaluating user interfaces. ‘The methodology facilitates the evolution of such interfaces with a
minimum of attention to the details of implementation and expetimentation. Finally, a potpourri of
practical, sometimes anccdotal information likely to be of interest to future help system designers is
collected in a practitioner’'s summary, and related topics ripe for further research are described in a
rescarcher’s agenda.

ACKNOWLEDGEMENTS 3

Acknowledgements

I owe so many people a debt of gratitude for their help in my studies that I had begun to fear that
the acknowledgements would be the longest section of my thesis. This fear notwithstanding, [would
like to thank the following people:

My advisor, Jim Morris, has been cverything one could want in an advisor; without his
encouragement, 1 would be in a gutter drinking cheap wine today.

The other members of my committee, Dick Hayes, Phil Hayes, and Frank Wimberly, have been
invaluable to me. 'Their sharp insights and criticisms have been balanced with well-timed
encouragement, and | am forever in their debt as well.

Kamila Robertson has also contributed more to me than [can repay. It was with her help and
encouragement that I took the fateful step away from the orthodoxy of Computer Science and into
the uncharted world of Human Factors.

I owe a special debt of gratitude to my friends in the Statistics Department, Yves ‘Thibaudeau and
Rob Kass, who saved me when | got over my head in regression analysis and other esoterica of their
noble science.

I would like to give special thanks to Mark Sobell and his publisher for permission to use large
portions of their excellent introductory text on UNIX!. Being able to use these texts saved me
months, if not years, of work, and helped guarantee the objectivity of my cxperiments. Those
experiments provided confirmation of one thing [had belicved from the start, namely that Sobell's
text is truly a top-quality introduction to UNIX. [recommend it highly.

Additionally, | would like to thank the many people who helped me in small ways and large
during the course of this rescarch: Mike Accetta, David Axler, Diana Bajzek, Rene Banares, Keith
Barrett, Michael Bergman, Bob Bramwell, Benjamin Britt, Peter Brown, Jean Brule, Jaime Carbonell,
Stuart Card, Tim Carlin, Jack Carroll, Davida Charney. Margarct Christensen, Don Cohen, Tim
Curry, John Daleske, Mark Day, Walt Doherty, Marc Donner, Tom Duffy, Ivor Durham, Rex
Dwyer, Jennifer Dykeman, Carl Ebeling, Jeff Eppinger, David Evans, Craig Everhart, Gary
Feldman, Kathy Ferraro, Tim Finin, Alan Fisher, Ed Frank, Bob Frederking. Lionel Galway, David
Garlan, Dick Glenn, Jaines Gosling. John Gould, Walt Haas, 1.conard Hamey, Fred Hansen, Peter
Hibbard, Steve Hill, Susan Horner, Adele Howe, Guy Jacobson, Ron Jarrell, Robin Jeffrics, Mike
Kazar, Jeff Kocchling, l.arry Kraines, John Kunze, Diane Langston, Jill Larkin, Robert Elton Maas,

lA Practical Guide to the UNIX System by Mark G. Sobell. Copyright (c) 1984 by Mark G. Sobell. published by The
Benjamin/Cummings Publishing Company. UNIX is a trademark of AT&'T Bell Laboratories.

4 THE DESIGN AND EVALUATION O1' ON-LINE HELP SYSTEMS

Jon McCombie, Bud Mishra. Allen Newell, Fric Osborne, Tom Peters. Frank Pfenning, Jon
Rosenberg, Mike Rychener, Rex Sanders, Mahadev Satyanarayan, John Schlag, Ben Shneiderman,
Jeff Shrager, Mel Siegel, Roy Taylor. Aaron 'T'emin, Ed 'Thompson, Mabry Tyson, Jeff T'ytus, Hank
Walker, Janct Walker, Jon Webb, and Bob Whiteside. Additionally, I would especially like to thank
all the people that should have been listed here, but weren't due to the frailty of my memory,

Ialso want to thank the National Science Foundation for a Graduate Fellowship which supported
me during my first three years as a graduate student, and the General Electric Foundation for a
Forgivable Loan which supported me during my last three years. Their generous help was
invaluable.

My colleagues at Advanced Programming Resources of Columbus, Ohio, several of whom are
alrcady listed in the acknowledgements above, have provided me with a wonderful opportunity to
use some of the knowledge I've acquired from this thesis before my thesis was even completed. 1
want to thank Barry Heagren. Ken Sherman. and everyone else at APR for their support and
encouragement in the continuing development of ACRONYM's successors.

Finally, with their rank in these acknowledgement reflecting not their importance but rather the
priority with which they all too frequently have been given my time, I want to thank my family and
friends for their love and support. My wife, Trina, my children, Shana and Rachel, and most of my
relatives and friends have continued to believe in me even when any rational being could tell that 1
would never in a million years complete my doctorate. If it weren't for them, they could never have
been right.

THE DESIGN AND VALUATION OFF ON-LINE HELP SYSTEMS

ACKNOWI EDGEMENTS

Part One
The Problem

THE DESIGN AND EVALUATION O ON-LINE HELP SYSTEMS

INTRODUCTION 7

Chapter 1
Introduction

This thesis investigates the problems inherent in the design and evaluation of on-line help systems.
The general problem of making coniputers easier to use is a vast enterprise of obvious importantce.
One common technigque used toward this end is on-line help. In this thesis, I will address the
questions of how uscful on-line help really is, what design alternatives may affect its relative

uscfulness, and how such systems can be evaluated.

By “on-line help systems™ or “interactive help systems™ 1 refer simply to any computer software
that has as its primary function the task of providing the user with information that will assist him in
the use of some other software system. This includes help systems that stand alone, as independent
utility programs in a a larger operating system, and subsystems ecmbedded within larger systems,

generally help procedures within specialized utilitics.

This thesis focuses entirely on the user interface to interactive help systems. Related topics that will
not be treated in detail include the implementation of help systems, the design of the task domain for
which help is being provided, and the importance of on-line help relative to other factors affecting
the ease with which a system is used. However, each of these areas is closely related to the subject of

this thesis, and some relevant material will of necessity be presented.

In the remainder of this chapter, I will describe in more detail the problems this thesis is concerned

with, and will outline the way the remainder of the thesis describes the solution.

1.1. How Should We Design User Interfaces?

. . . . L.
Much has been written about the design and testing of user interfaces.” Several authors have

proposed design methodologics in an attempt to facilitate and standardize the process by which good

2For example, [1. 4. 6, 14. 29, 32, 53, 54, 60, 61, 62, 68, 75, 78, 88, 92, 98, 102, 107, 121], to name a few.

8 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

interfaces come into the world. Unforwnately, these are rarely used in the real world for a very good
reason: they typically mandate a prohibitive amount of time spent in iterative design and formal

testing.

Although this thesis is concerned primarily with the specific question of designing and evaluating
on-linc help systems, it also serves as a casc study in the use of such methodologics. The
mcthodology used here is original, but derived in some part from those that have gone before. In

outline, it consists of cight steps:

1. State the problem. In order to better understand the problem, closely observe real world
users of the kind of system being studied. For this thesis, the problem can be stated as
“What would a good on-line help system look like?" This question is expanded upon in
Section 1.2.

2. Describe what already exists. Try to develop a framework that describes all the known
existing systems by their differences along some small number of simple dimensions.
This is done here in Chapters 2 and 3.

3. Scarch the litcrature for previous experimental results contrasting competing system
designs. This is done in Chapter 4.

4. Construct hypotheses regarding the most important design decisions: What are the most
important decisions? What are the likely answers? These are made explicit in Section 1.3.

5. Implement a prototype system that supports cach of the major design alternatives. Use
all available tools to build the system quickly, sacrificing portability, efficiency, and
modularity where necessary to get the job done fast. The implementation used in this
thesis is described in Chapter 5.

6. Conduct controlled experiments to test the hypotheses about the correct design decisions.
Carefully observe the details of the users’ interaction with the system. The experiments
used here are described in Chapter 6, with the results reported in Chapter 7.

7. Where the experiments do not bear out the hypotheses, consider reiterating from step 4.

8. Build the real system, doing right all of the things that were done wrong in step 5. This
was not done as part of this thesis, but the conclusions point out a clear path in this
direction. These conclusions are summarized in Chapter 8.

As stated above, this methodology is not terribly new. However, it is somewhat unusual in its use
of jury-rigged prototype systems, its cmphasis on thorough initial scarching of the literature, and the
use of protocols from previous systems. All of these features are geared to an often-mentioned aspect
of software development in recent years, the fact that one of the largest costs is programmers’ time.
This methodology is designed to dclay the costly coding efforts until the last possible moment, with

the hope that this will reduce the later costs associated with software maintenance and redesign.

INTRODUCTION 9

Methodologies such as this one are ofien proposed, and their evaluation is difficult and subjective.
In Scction 8.2, I will discuss the results of using the methodology in the domain of on-line help, as

well as its applicability to other investigations of user interface design.

1.2. How Should We Build Interactive Help Systems?

Help systems have traditionally been one of the most neglected aspects of interactive systems.
Many otherwisc excellent picces of software include no help system at all, or help systems so ill-
conceived as to be nearly uscless. Although some better examples are available [84, 100], the help
systems in general usc are so uniformly unappealing that designers who do make an effort to
construct worthwhile help systems tend to assume that they are starting with a clean slate, working on
a problem that has never been seriously confronted before. Indeed, such was my assumption when |
began the work on help systems reported in this thesis. However, I have discovered that quite a few

interesting examples of useful help systems do exist, from which much can be learned.

First, however, it helps to have a clear idea of the underlying questions to be answered. 1 begin
with the assumption that the single most important criterion by which a help system should be
judged is the degree to which it facilitates the accomplishment of a particular task by a user who did

not previously know how to accomplish this task.

This is a very practical criterion, but not the only one possible. For example, it is not necessarily
the case that the help system which is most effective in the sense described above will also be the one
which the users most enjoy using. Additionally it is probably not the casc that the help system which
is most effective will also be the one which is the greatest aid to long-term learning. Indeed, precisely
the opposite may be true: it may be that the harder users have to work to learn to accomplish a
particular task, the more likely they are to remember the solution. Even if that were true, however, it
would not be reasonable to conclude that help systems should therefore be as unhelpful as possible,
in order to promote long-term learning. Therefore in the absence of an objective and reasonable
alternative, the effectiveness of a help system in facilitating learning has been selected as the primary
criterion by which help systems will be cvaluated. In addition, subjective user preferences and

retention will also be considered as secondary measures of interest.

The design of on-line help systems is hampered somewhat by a constraint that is universal in
interactive systems, but uniquely important in help systems. This is.the need for simplicity - for an
interface that requires minimal knowledge and effort for its use. Certainly simplicity is a virtue in the

user interface of any program. but it is vital for a help system. Typically, a help system is never used

10 THE DESIGN AND EVALUATION O ON-TINE TIELP SYSTEMS

for its own sake but only as a tool to aid in the use of another system. [tis therefore used by people in
a hurry, often total novices, often already very frustrated, who have absolutcly no desire to learn any
more than the bare minimum about the help system itsclf. In this sense, many fancy features may be
sclf-defeating in a help system. if they slow the user’s progress toward the explanation he sceks by

making him first learn the complexitics of the help system.

What, then, should a help system actually look like? Indeed, is it even possible for a help system to
be of more assistance than a paper manual, which certainly presents the simplest mechanism
imaginable for most users? ‘I'he remainder of this thesis provides the beginning of an answer to these

questions.

1.3. The Experimental Hypotheses

In this section, I will briefly describe the fundamental hypotheses that motivated the design of the
ACRONYM help system (Chapter 5) and the cvaluative experiments (Chapter 6). These hypotheses
were arrived at after the literature surveys, user surveys, and user protocols that are summarized in
Chapters 3 and 4. The most striking fact about these hypotheses is that, after all that surveying, so
many of them were wrong. They are nonetheless presented here in their original form, to allow the

reader to make his own guesses before the results are detailed.

Hypothesis I: While quality of help texts is crucial to good on-line help. the methods by which
those texts are accessed are of equal or greater importance in their effect on learning time.

Hypothesis II: New users of a system will learn more quickly using menu and tutorial help
systems than with key word or user-initiated context-dependent help systems.

Hypothesis I1I: Experienced users will learn new tasks more quickly with key word and user-
initiated context-dependent help systems than with menu and tutorial help.

Hypothesis IV: Both new and experienced users will fare better when both context-dependent
and non-context-dependent help are available than when only one or the other is
available.

Hypothesis V: Even a very sophisticated help system will not be nearly as helpful as a human
tutor.

Hypothesis VI: Allowing users to type help requests in English will not significantly improve
their rate of learning.

INTRODUCTION 11

The results of the experiments tend to indicate that one of these h_vpothcscs3 was correct, three*

were simply wrong, and two® were concerned with differences too small to be detected by the
experiments. Nonetheless, these basic hypotheses (most of which were specified explicitly when the
experiments were designed) underly the design of the help system and cxperiments described in the
Chapters 5 and 6.

1.4. The Structure of this Thesis

This thesis is divided into five major parts. Part One presents the problem and its background.
After this introductory chapter, it consists of a general taxonomy of help systems (Chapter 2), a
survey of existing help systems in the context of that taxonomy (Chapter 3). and a survey of prior

experimental results relevant to help systems (Chapter 4).

Part Two describes the method used to attack the problem. Chapter 5 describes the design of a
prototype help system, known as ACRONYM. This system offers all of those features isolated as
most important by the taxonomy and survey, using an integrated database. The factors leading to
ACRONYM's design and its limitations are discussed. along with the actual workings of the system.
Chapter 6 describes the experimental method used to evaluate ACRONYM and the hypotheses
associated with its design. 'This chapter also explains why the experiments were designed as they

were, and what other help systems were cvaluated.

Part Three analyzes the results of the experiments. Chapter 7 presents in detail the results
comparing the help systems, as well as issues of user expertise, task and subject variation, subjective
evaluations, and user retention. Chapter 8 summarizes the results and contributions of the thesis,
both in regard to help systems and in the more general arca of user interface design. This last chapter
includes a Practitioner’s Summary, which could be subtitied “Advice to Builders of Future Help
Systems™, and a Rescarcher’'s Agenda, summarizing the vast body of rclevant and interesting

questions not answered by this research.

3Hypothesis VI

411)/p0111cscs LIV,and V

5] fypotheses 11 and 111 '

12 THE DESIGN AND EVALUATION OFF ON-LINIE HEELP SYSTEMS
1.5. How to Read this Thesis

There are several different approaches to reading this thesis which might be useful, depending on

what you want to get out of it.

If you want to build a real help system, and are looking for practical advice, you should probably
read all of the background material (Chapters 1-4). You should then read the description of
ACRONYM in Chapter 5, and the conclusions in Chapter 8. You will certainly want to look at

Appendix B, which demonstrates the system in use, and may want to peruse Appendix C as well.

If you're more interested in this thesis for its experimental methodology, cspecially if you're
planning similar experiments in the future, you may want to skip Part One altogether; in fact, you can
probably begin with Chapter 6 and read the rest of the thesis from there. You may wish to look over
Appendix A to sce how the experiments looked to the subjects. If you're not comfortable with

regression analysis, you might want to read Appendix E as well.

If you have a special intercst in issues of text readability and technical writing, you should test your
skills on the examples in Appendix D. 'This appendix presents samples of the two versions of the
UNIX manual studied in the experiment, one of which was dramatically more useful to the subjects

than the other. The details and implications of this particular results are presented in Section 7.3.

A GENERAL TAXONOMY OF HIELP SYSTEMS 13

Chapter 2
A General Taxonomy of Help Systems

Pcople have been building interactive help systems almost as long as they have been building
software systems of any kind. In general, however, the help system has been an afterthought, quickly
and hastily constructed and only marginally integrated into the larger system. Programmers like to
program; They are not so fond of documenting their code, and cven lcss fond of writing
documentation for the final users of their systems. On-line help, it would appear, is yet still lower in

the hicrarchy of the programmer’s favorite activitics.

Nonetheless, over the years quite a few interesting approaches have been tried. generally in isolated
settings and in an ad hoc manner. A few attempts have been made to survey the field [S5, 113, 108],
but these have been less than successful. Houghton [S5], for example, purports to survey the area of
on-linc help, but includes in this category such diverse topics as error messages and prompting. As
far as the central topic of this thesis, the mechanisms of on-line help, is concerned, he does describe
many of the types of help system to be discussed here, but he makes no attempt to fit them into any

framework or taxonomy to describe such systems.

Sondeheimer and Relles [113] actually do construct a simple taxonomy of on-line help systems.
They classify help systems according to four dimensions. The following descriptions are from the

article cited:

1. access method -- the way users can construct or enter requests for assistance.

2. data structure - the manner in which different portions of assistance information are related
1o each other.

3. software architecture -- how assistance requests and their responses are communicated
among a user, an operating system, application programs, and the assistance database.

4. contextual knowledge -- how much information is retained about the assistance
environment, including the user, the application, and the tasks being performed,

(I'rom Sondheimer & Relles, [113])

These categories, however, view on-line help from a lower level than is desired in this thesis. Of the

four categorics, the second and third are primarily questions of implementation, while the fourth is

14 THE DESIGN AND EVALUA TTON OIF ON-LINE HELP SYSTEMS

also an implementation consideration in the sense that the implementor must decide how much
context to preserve. For the purposes of this taxonomy, 1 would like to presume an arbitrarily fast
computer with otherwise ideal hardware and sufficient memory to casily retain all relevant contextual
information. (Recall that the topic is the design and cvaluation of on-line help, not its
implementation.) From this idealized pcrspéctive, it is casier to develop a user-oriented taxonomy of
help systems. After that taxonomy has been developed, it will be scrutinized in Section 2.4 for

implementation considerations.

In the scctions that follow, I will describe seven dimensions along which the help system as the user
sees it may vary. ‘Three of these are issucs of help access, among which is Sondheimer and Relles’ first
category, access mechanisms. Another three dimensions are issucs of help preseniation. The seventh,
and possibly most important dimension of help system variation is integration -- the degree to which

the various help features are uniformly available in all potentially relevant contexts.

Among the areas not included in this taxonomy are error messages, prompting messages, command
languages and basic interface paradigms. Such topics are certainly important components in the
usability and lcarnability of interactive systems, but are beyond the scope of this thesis. Eventually a
taxonomy of on-line help systems should be subsumed by a larger taxonomy of user interfaces, which

would include such topics.

Also not included in this taxonomy are any issues related to implementation. It seems premature to
dwell on the appropriate underlying data structures for on-line help systems before it is clear how the
systems themselves should work. However, it is worth noting that the data structures used in the
prototype system described in Chapter 5 are sufficient to support nearly all of the functionality

described here in an efficient manner.

2.1. Access Issues

There are at least three major issues involved in the user’s access to a help system. These issues
involve whose initiative first stimulates the help system’s activity, how the user may request further

help, and how complex the help request language is.

A GENERAL TAXONOMY OF HELP SYSTEMS 15
2.1.1. Access Initiative

The initiative in a help system may come from only two sources: the human user and the
computer. In most systems. the initiative is strictly the user’s. No help is presented until the user
activates some cxplicit mechanism to request help -- for example, by typing the word “help” or
pressing a key labeled “HELP™. In such a system, the help component may be viewed as simply a

utility program that is activated by specific commands.

In other systems, however, initiative may reside wholly or partially with the computer. In several
tutoring systems (such as the WIZARD system [37, 109]) the program will intervene and suggest new
approaches or provide new information when the user seems to need it. In more conventional
systems, software carcfully cngineered for novice users (such as Lotus 1-2-3[84]) may provide
automatic help in the form of two-level menus that indicate some consequences of possible menu
choices.® (Here, the border between on-line help as I have defined it and prompting messages
becomes somewhat fuzzy.) Other possibilities for mixed-initiative systems include systems that
automatically offer help if the user is idle for a certain period of time, systems that automatically
attempt to interpret invalid commands as requests for help of some sort, and systems that maintain a
constantly-updated display of help that scems appropriate for the current context, such as Lotus
1-2-3.

In classifying help systems according to access initiative, such systemns are simply placed on a
continuum between systems in which human users have the sole initiative and systems in which the
computer has the sole initiative. In practice, it is very rare to find a system in which the computer
more often takes the initiative than the human, but systems with somewhat mixed initiative are

common.

2.1.2. Access Mechanisms

Despite the large number of on-line help systems that have been built. the number of access
mechanisms implemented or even proposed is actually very small. I have been able to isolate only six
such mechanisms. Of course, there is a wide room for variation in the implementation of these
mechanisms; the most important aspect of such variation is access complexity, which is discussed in
Scction 2.1.3.

6Scc Section 3.1.8 for a more complete description of how this works.

16 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

‘The mechanisins discussed below are all discussed in terms of human-initiated help. However, the
same mechanisms can be available for communicating with a system in which the computer takes the
initiative; in such a case, they are simply mechanisms for requesting further help or clarification,
rather than for requesting initial help. (The exception to this is contextually dependent help.
Context is generally most uscful for an initial help request, rather than in requests for clarification.

However, context is an essential component of any help that is initiated by the computer.)

2.1.2.1. Key Word Help

Probably the most common help mechanism is the key word help request. Here the user simply
specifies a key word which the system uses as an index to its help database. The sophistication of the

key word mechanisms can vary greatly, however.

Most often, the only key words acceptable to a system are the actual names of commands.
Although this is extremely common, due to the obvious ease of implementation, this method suffers
from the equally obvious disadvantage that users can not get any useful help until they know the
name of the command they need to learn about. (This effect is partially compensated for, in some
systems, by allowing the system to print a list of the key words it knows about. By skimming this list,
the user can try to guess which key word is the one he wants. But this quickly becomes unwieldy on
large systems such as TOPS-20 [22], in which the list of key words may number in the hundreds, or in

other systems in which the key words are simply inscrutable.)

A somewhat more sophisticated key word mechanism might scarch through a sectioned database
for any key word that might be specified, printing out for the user those sections of the database that
contain the key word. This approach is also quite easy to implement, but in a large database it can be
very time-consuming. Some systems, such as the “key” command on CMU UNIX [118], modify this
approach by only searching through a “‘header”™ area of each section of the database, rather than
through cvery line of the database. This improves the system’s performance at the cost of a
substantial reduction in the number of key words recognized and the proportion of possible relevant

entrics found.

One problem with any method that involves searching through a textual database for an arbitrary
word or phrasc is that such unintelligent searching inevitably finds texts that are totally inappropriate.

A request for information about the key word *“‘sce’ might elicit information about a random number

A GENEFRAL TAXONOMY O HELP SYSTEMS 17

generating subroutine that requires a “sced” value.” Applying the computer’s raw power to the task
of scarching a databasc can thus have the undesirable result of overwhelming the user with irrelevant
information. (Such an information flood becomes somewhat more managcable in a system that
facilitates scrolling, but the sheer volume can still exact a significant cost in the user’s time, as the

cxperiments in this thesis suggest.)

Unfortunately, what is probably the “right” technique for constructing key word help mechanisms
is also the most difficuit and expensive. Each scction of the help database can be explicitly indexed
by the relevant key words. This places a heavy burden on the documentation designer, in that it is
crucial that he provide all such keywords, but it is the surest method for guarantecing that all relevant
key words will find the text, while also insuring that key word requests for common or short words
will not overwhelm the user with useless information. This form of key word request is rare in
on-line help systems. though it is more common in large information retrieval systems. This is the

approach uscd by the prototype help system described in Chapter 58

2.1.2.2. Menu Help

The second most common type of help access mechanism is the menw. In a menu system, the user
is given a list of help topics from which to select the topic or topics of interest to him. Details of
menu implementation can vary greatly, gencrally along a simple continuum of ease of use. Menu
sclection can be as simple as pointing with a mouse, or can depend on a complex syntax for
requesting the next menu item. Menu systems also differ in the mechanisms by which the first menu
is created. Menus can be created in response to erroneous commands, in response to explicit requests

for help, or as a follow-up to the previous menu selection.

Systems such as ZOG [100] have had some success with the idea of a menu system as the only mode
of human-computer interaction; other systems that have not embraced the menu as the entire
command language have nonetheless used it as the entire help system structure [66]. Nonetheless, the

strict discipline of a menu may slow down the performance of expcrtsg and may make it difficult for

7ln this example. it might seem that an appropriate mechanism would simply require that an entire word match the key word
being searched for. but this is inadequate in other ways: for example, real users will often try to scarch for a key word such as
“del” instead of a sequence of key words such as “delete™ and “deleting”. Thus partial word matching is often desirable.

81he prototype system hand-codes all of the key words, a very expensive implementation in terms of documentation design
time. Development of such systems in the future could be greatly streamiined with automated aids for the documentation

designer, including, most important, an on-line thesaurus.

()Allhough this is a common opinion among computer experts, I have found no empirical cvidence to support it.

18 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

naive users to find help on particular topics. Thus integration with other modes of help requests may

be particularly valuable for menu-based help systems,
2.1.2.3. Contextually Invoked Help

Several help systems have had great success with providing information based on the user’s current
context. In such a system, information ranging from a partial command line to a user’s entire history

of use of the system can be used to determine the help most appropriate at the moment.

Obviously. an ambitious context-dependent help system could be a major programming
undertaking. Yet the basic mechanisms that have proved uscful in systems such as TOPS-20 [22] can
be implemented fairly casily. The most basic such mechanism is a parser that analyzes the current
partial command line and uses it as a help request, as is done in TOPS-20. Another simple
mechanism would just keep usage statistics to show which commands and options a user had often
executed in the past, and would use these to choose among possible interpretations of help requests.
(Note that these statistics could be used in responding to any type of help request, not merely one

based on the context of the current command line.)

A common failure of context-based help systems such as TOPS-20 is a failure to integrate the
centext-dependent help with other compoenents of the help systems. That is, the system makes it
impossible for the user to pursue more information from the help system without abandoning his

command state. This issue will be discussed more fully in Section 2.3, below.

2.1.2.4. Graphically Invoked Help

With the advent of integrated workstation environments, utilizing bitmap display technology and
pointing devices such as mice, new kinds of help access mechanisms have become possible. While
these technologies facilitate improvements in the other help mechanisms -- menu selection, for
example, is likely to be much easier with a mouse than without one -- they also allow the possibility

of simply pointing at images on the screen and asking for help about them.

Since the technology is still quite new, on-line help’s traditional position in the panthconm of
things important to computer programmers has predictably insured that not much has been done
with these technologies in the area of on-line help. In particular, I have found no general-purpose

help system in which the mouse could be used to point at any object, including picturcs, on the

10pun-lhe’-cm. n. 3. The aggregate gods of a pcople. (Webster's Collegiate Dictionary, third edition)

A GENERAL TAXONOMY Ol HELP SYSTEMS 19

screen in order to request help about it. However, an carly vision of such a system may be found in
the GROK program at the Information Technology Center at Carnegic-Mellon University [83]. This
utility program allows the user to point at any fext on the screen to request help about it. It is
perhaps best thought of as a graphically-aided key word help request system. An unfinished help
system for the SPICE project at CMU uses bitmap technology to produce innovative help displays,
with “push buttons™ in the help windows allowing the mouse to be used to get further help [21]. This
is essentially a variant of menu selection, in a more command-oriented display. It remains to be seen
whether graphically based help systems such as these will eventually provide entirely new paradigms
for help, or whether they will just facilitate improvements on other help access mechanisms such as

menu and key word help.

2.1.2.5. Natural Language Help Requests

An obvious possible access mechanism for on-line help is natural language. After all, if the nature
of the task domain (help requests) presupposes that the user is having some kind of difficulty using
the computer, it secms logical to suppose that communication in the user’s native tongue would be an
invaluable assistance. Indeed, this kind of communication seems so natural that its desirability is
accepted without question in the sparse literature on help systems. Sondhcimer and Relles, for
example, state flatly that “ldeally, we would like to allow users to enter assistanéc requests as

questions in natural language.” [113]

Such uncritical assessments are made possible only by the difficulty of implementing such systems.
Panaceas generally only last until they are tried. And indeed, the difficulty of constructing natural
language interfaces has so far prevented any realistic testing of them in the context of on-line help.
For example, Wilensky [122] has developed a natural language consultant for UNIX, but has been
unable to provide any real data about its usefulness for two reasons: its database is too small to be
really useful, and it takes over a minute to respond to even the simplest of requests. In the absence of
the technology to make such systems perform well enough for real users, it is certainly tempting to
imagine that simple performance enhancements will one day allow such systems to solve all of the

problems of on-line help.

Unfortunately, therc are several reasons to suppose that this is not the case. Natural language is
extremely verbose; thus it seems possible that the time necessary to actually type in natural language
help requests will at least partially compensate for the case with which such requests can be
formulated in the mind. Moreover, expert users seem to rebel against any systems that force them

into what might be considered “necdless verbosity”. Draper [27] has suggested that experts may in

20 THE DESIGN AND EVATUATION OF ON-LINE TIELP SYSTEMS

fact be the most important users of certain kinds of help systemns; if this is true, it does not bode well

for natural language help.

As part of this thesis, an experiment was conducted testing a simulated natural language help
system, with results that will be disappointing to those who belicve that natural language is the

answer. ‘T'hese results are reported in Scction 7.1,

2.1.2.6. Spoken Help Requests

Onc mechanism that has apparently never been used in a help system is speech recognition.
Specch recognition has obvious potential usefulness in help systems; for cxample. a natural language
system that understood spoken input would not be vulnerable to most of the criticisms of natural
language help systems that were listed in the previous section. However, since speech recognition in
a complex domain remains a topic of intense research activity with little practical success, this will not

be possible in the near future.

Speech recognition has had more success in limited domains; systems such as HEARSAY-II
[87] and HARPY [71] have successfully recognized vocabularies of hundreds of words. It is
conceivable that limited-domain specch recognition could open up new possibilitics in on-line help
systems. No such work has vet been done, and time and hardware have prevented the investigation

of such possibilities in this thesis.

2.1.3. Access Complexity

The third access dimension along which on-line help systems may vary is in the complexity of the
mechanisms by which help is requested. Virtually all of the mechanisms described in the previous
section may be implemented well or poorly from the user’s perspective. The difference can be

overwhelming in terms of its effect on the system’s effectiveness.

For example, SHEPHERD [105] is a system designed to managed source files for SAIL. programs
and to organize their documentation. The system includes an on-line help system that organizes the
information about the SAIL library into a tree structure that is, in essence, a menu system. However,
the access mechanisms were sufficiently cumbersome that the system was rarely used by the
community for which it was designed. In contrast, a well-designed menu system such as ZOG
[100] has had enormous success with a wide variety of user groups, using the same basic access
mechanism. The difference is that in ZOG, a menu sclection can be made with a single keystroke,

generally with a fair amount of semantic content. In poorer menu systems, such as the CMU LISP

A GENERAL TAXONOMY OF HELP SYSTEMS 21

help system described in Section 3.1.6, a menu selection may necessilate typing the name of a path
through a help network, such as “HELP PRINT-LPT-EXAMPLES”. In gencral, a little extra
programming can go a long way in improving such systems for the end user; for example, if the user
had just viewed help by typing “HELP PRINT-LP1™, it is not a major programming cffort to have a
follow-up request of the form “HELP EXAMPLES” translate to “HELP
PRINT-LPT-EXAMPLES”. Using a mouse to point at the word “EXAMPLES™ is probably better
still.

Of course, syntax issucs are relevant to other types of help access mechanisms besides menus; in
general, the simpler the syntax the better. This is true of user interfaces in general, but it is especially
true in help systems becausc the systems must be uscful when the user is in a state of confusion or

ignorance. The last thing such a user needs is a help system with unnecessarily baroque syntax.

In addition to syntax, there are scveral other factors affecting the complexity of help access
mechanisms. In menu systems, the branching factor is crucial: a system with too many choices at
each level can overwhelm the user, while a system with too few choices can force the user to choose
too often, making the process of actually finding the right information an arduous one. In graphics-
based systems, issucs of what icons should look like and how selection with a mouse should be
achieved (number of clicks, meanings of buttons, ctc.) are still in gencral unresolved; their resolution
is obviously important for on-line help svstems that use these mechanism. Finally, context-
dependent help systems may react in a number of ways when help requests are ambiguous in context.
Dynamically-generated menus that allow the user to choose between the ambiguous interpretations
are clearly less complex and less frustrating to the user than a message which simply tells the user that

his request is ambiguous.

Many of the help systems [have studicd have suffered from these kinds of “minor” flaws. That is,
their basic help access mechanisms have been sound, but the details of the interactions with the users
have been unnecessarily complex or otherwise difficult. It seems likely that in the domain of on-line
help. where the user’s frustration level is very high to begin with, such small problems can have a
high cost. Ultimately, they can cause such systems to end up like SHEPHERD: virtually unused
despite the wealth of information they contain and the reasonable paradigm with which they are

designed, simply because they arc too frustrating to usc.

by THE DESIGN AND FVALUATION OF ON-LINE NHELP SYSTEMS
2.2. Presentation Issues

On-line help varies greatly not only in how it is accessed, but in how it is presented as well. In this
section, I will explore the three principal dimension along which the presentation of help information

may vary.

2.2.1. Presentation Methods

"The simplest and most common method of presenting help information is to simply throw it onto
the user’s screen, with no regard to what was there first. This is the teletype model of interaction,
which views the user’s terminal as a one-way device that can do nothing more than accept scquential
lines of text. Although this model is hopelessly out of date, it is simple for the programmer to deal
with and therefore underlies the majority of on-line help systems in the world today. Its greatest flaw
is that it almost always causes the user’s previous context to scroll of the screen, so that he can no
longer see the result of the interaction with the computer that caused him to request help in the first

place.

Another presentation method that is almost as casy for programmers is to simply rely heavily on a
printed manual. The on-line component of a help system can simply tell the user which part of the
manual to look at, thus serving as no more than an “clectronic index™. This drastically reduces the
volume of output from the on-line system, thus at least partially prescrving the user’s context on the
screen. The great drawback of this system, however, is its reliance on paper. A user without a paper
manual is doomed, and a user with an outdated manual can be in even worse shape: instead of no

information, he may have erroncous information.

Video screen technology has allowed more modern help systems to use multiple windows. In such
a system, the user can preserve his context at the bottom of the screen, for example, while scrolling
through help texts on the top of his screen. The penalty here, of course, is that the available screen
size for each of these activities is only half of the screen size to which the user is otherwise
accustomed. Large displays such as those found in the new generation of workstations will alleviate
this problem to a large extent. If help systems that make usc of multiple windows become commonly
available in tandem with the larger screens, even experienced users are less likely to resent the screen

territory that is allotted to the help system.

It should be stressed, however, that despite the penalty that multiple windows can impose on screen

“real estate.” the overall effect of windowing technology is extremely beneficial, and facilitates a host

A GENERAL TAXONOMY OF HELP SYSTEMS 23

of new techniques. Multiple windows and multiple processes (which facilitate help processes running
independently of the application program) have fundamentally changed the landscape in the world

of help systems.

Finally, the future holds the promise of new technologics that might be useful for the presentation
of help information. Synthesized speech might provide help without sacrificing any of the screen
territory, though no experiments have been conducted on such a system. (Synthesized speech has
often been of a rather low gquality, which could make it less comprehensible and thus less useful in a
help system.) New displays also make it plausible to include pictures, animations, or even videotapes
as part of a help message. Thorough investigation of these possibilitics will require substantial cffort
in both hardware and software development, but a first glimpse of these may be seen from some of

the tutorial programs that come with the Apple Macintosh computer.

2.2.2. Presentation Source

Besides the question of how the help information is to be presented, there is the question of where
itis to come from. This may seem to be primarily an implementation question: text may be clipped
out of a monolithic on-line manual, it may be retrieved from a network of help texts, or accessed by
key word from a relational database. However, there is a more fundamenta! issuc here as well. The
text can cither be retrieved verbatim from some data structure that contains it, or it may be generated
“on-the-fly” by some natural language composition mechanisms acting on an underlying knowledge

representation.

Dynamically generating text from an underlying knowledge representation is the kind of project
that computer scientists love, and indeed many current rescarchers are taking this approach to on-line
help [40, 91, 117]. However, it seems reasonable to question the motivations of such an effort.
Certainly getting computers to generate reasonable natural language from a knowledge
representation base is a fascinating and uscful rescarch topic. But in the domain of on-line help,
presumably, the primary goal is not to build an on-line help system that is theoretically interesting
but rather to build an on-linc help system that helps the user. In this light, there is no evidence to
suggest that dynamic generation of text is likely to produce higher quality texts than human
documenters would produce if they prepared all the system’s texts in advance. (Indeed, the output of
language generation programs suggests that the opposite is true.) However, it may be useful to use
language generation facilities to dynamically generate examples, or to customize explanations to a

specific context in which the user is having difficultics. Given the current state of language

24 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

genceration, this does not yet sound like a very even trade. Still, a state of the art help system might
want to provide standard texts for standard situations, dynamically generated cxamples, and
dynamically generated or dynamically modified texts for unusual situations, most notably situations

involving ambiguous help requests where none of the “canned™ texts unambiguously apply.

2.2.3. Text Quality

The final dimension along which help presentation varies is that of text quality. Help texts are
Fnglish prosc, and as such vary in quality as widely as the rcadings and compositions vary in a high
school English class. 'The litcrature on text readability is enormous, and nearly all of it applies to help

texts.

What this suggests primarily is that such texts should be designed by a specialist. Nonetheless, it is
possible for the non-specialist to evaluate his own texts in the light of certain very general criteria. It
should be remembered, however, that most of these have not been experimentally studied for their

importance in the particular domain of on-line help systems.

e Readubility. Scveral standard mcasures cxist by which text readability can be measured.
National magazines such as Time and Newsweek have determined that their texts are best
accepted when written at a seventh or eighth grade reading level. Documentation writers
can use automated tools such as the UNIX swyle utility [15, 16] to determine the reading
levels of their texts. The current study does shed some light on the usefulness of some of
these tools, as explained in Section 7.3.

e Organization. Familiarity with the task domain and user population of a help system can
help the documentation designer to organize his texts intelligently. In addition to
standard considerations of reasonable structure, knowledge about the tasks and users can
help to put the most commonly-needed texts up front. Little details such as these can
save enormous amounts of user time and frustration cumulatively over the life of a
system. :

e Formatting and headings. Designers of paper documents have long been aware of the
importants of headings. font size, and similar considerations of layout[33]. With the
advent of bitmap display technology, these same issues are becoming relevant to on-line
help designers.

o Chunk Size: Complementing meaningful, highlighted headings should be texts divided
into small pieces. If the headings are meaningful and easy to read and notice, then they
allow the user to only read the relevant sections of text. In order to make this work, the
text should be divided into sections that arc as small as is reasonably possible, thus
minimizing what the user actually has to read. (How small is small cnough? It seems
likely that this depends on several factors, including task compléxity and display
characteristics. Certainly it is best if the texts fit in a window without any need to scroll,
but cven this is not always possible.)

A GENERAL TAXONOMY OF HELP 5YSTEMS 25

o Voice and Orientation: 1t scems likely that use of the passive voice, anthropomorphic
orientation, and similar considerations of style may heavily affect the usefulness of text.
While passive voice scems to be universally condemned, other issues such as
anthropomorphism are morc disputed. Houghton [SS5] declares it to be absolutely wrong,
but at least some professional documentation writers scem to think that texts in the “You
User, Mc Computer” style put users at casc and make the texts gencrally clearer.
Commodore Business Machines has graced the literature with several extreme cxamples
of this style[20] without anything remotely resembling negative cffects in the
marketplace.

2.3. Integration

Finally, perhaps the most important aspect of an on-linc help system as a whole is its level of
integration. Many computer systems provide several on-line help mechanisms, each with its own
databasc, operating completely independently. The experimental system designed for this thesis
offers several methods of accessing the same information, making it casy to switch between methods

R Similarly, some systems make on-line help an independent utility, accessible

when appropriate.
only when you’re not doing anything else, while others try to make the help available within the

context of most other, larger tasks.

The virtues of integration are obvious: by providing uniform access to help, you climinate
confusion for the user and make it easier for him to stay in context. By making various mechanisms
access a single help database, you make it casier for the user to try all of the mechanisms you provide
in his attempt to learn what he needs to know. Of course, integrated help is more challenging than
non-integrated help from an implementation perspective, but the prototype help system described in

Chapter 5 demonstrates that the problem is neither impossible nor, indeed, particularly difficult.

An excellent example of the need for integrated help systems was found in the observation of a
TOPS-20 uscr attempting to create a subdirectory for the first time. This user first used the list of
help topics that TOPS-20 provides as an index to its key word help system, and managed to
determine that the “BUILD” program was for building and modifying subdirectories. After typing
“build”, the user typed a question mark. This activated TOPS-20’s context-sensitive help facility,
which told her that the next thing she should type should be a directory name. Unfortunately, this
user did not realize that in TOPS-20, directory names are almost always surrounded by angle

brackets. After trying unsuccessfully for several minutes to get the program to accept her version of a

! 1I know of no other system thal has done this, although Fenchel's thesis [34]described a system designed to work this way
but never fully implemented in this regard.

26 THE DESIGN AND EVALUATION O ON-1INE HELP SYSTEMS

dircctory name, the user had to get out of the BUILD program entirely and usc the key word help
system to search for an explanation of what dircctory names look like. Had the context-sensitive help
mechanism and the key word help mechanisms been integrated using a common database, she could

have gotten this information from within the BUILD utility, without sacrificing her entire context.

Morcover, integrated help systems would be helpful to the documentation designers as well as to
the users. In non-integrated systems, several different databases of help information must be created

and maintained. which is inevitably more work than maintaining a single database.

It should be noted that an “integrated™ help system. in which all help systems access the same
database and are available together in all contexts, is not at all the same as an “intcgral” help system.
An “integral” help system is one in which the help is provided by the same program that executes the
command. The help is viewed as an essential part of the program’s functionality, hence the term
“integral”. The argument in favor of integral help is that the help system can provide better help
because it has access to the program’s underlying data structures. While this may be true in the case
of an extremely sophisticated help system, it is unlikely in most cases to compensate from the loss of a
uniform help system available for use in all prograins. Essentially, this is the same trade-off involved
in the choice between designing sophisticated user interfaces for each program, or designing a single
user interface management system which will communicate with all of the underlying programs. You
may sometimes have to sacrifice a little functionality if you really want a well-designed, uniform

interface.

It is also worth noting that it is the availability of multiprocessing capabilities that makes it
reasonable to consider an elaborate non-integral help system of the kind built for this thesis. In an
environment without multiple processes, it would be much harder to design an integrated help

system that preserved any arbitrary command context.

2.4. Implementation Considerations

In the preceding sections, 1 have discussed scveral dimensions along which on-line help may vary.
In most cases, the variation can be clearly supposed to be for the better in one particular direction.
What has not been considered is the cost of implementing some of the help mechanisms described.
Such a cost assessment and implementation analysis is beyond the scope of this thesis. However, it is

worth noting which things are particularly hard.

In particular, sophisticated-graphics are hard, natural language is hard, speech recognition is hard,

A GENERAL TAXONOMY OF HELP SYSTEMS 27

and context-dependent help can be arbitrarily casy or hard, depending on how far the system tries to
go. Aside from these things, however, all of the help mechanisms described in this chapter can be
implemented rcasonably inexpensively at quickly by any good programmer. Why this hasn't

generally been done is a very good question.

2.5. Summary

The dimensions among which help systems vary, as described in this chapter, are pictured in Figure
2-1. This chart may be helpful in considering the design of help systems as yet unimplemented. In
the next chapter. I will use the taxonomy to describe a number of help systems actually used in the
real world, and to cxplain the successes and failures of these help systems, as reported by their users

and observed in user protocol experiments.

Figure 2-1: The Dimensions of Help System Variability

‘ Integration
Access Presentation
Issues Issues
Initiative Complexity Mechanism Methods Source Text
Quality
Key Word Context-
Dependent
Menu Natural
Language

Graphical Spoken

28

THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

ASURVEY O EXISTING HELP SYSTEMS 29

Chapter 3
A Survey of Existing Help Systems

3.1. On-Line Help Systems for User-Oriented Software

In this chapter, 1 will discuss a number of rcal world help systems in the perspective of the
taxonomy of help systems presented in the previous chapter. The list of systems discussed in this
chapter is far from cxhaustive; it is intended instead to be representative of the diversity of help
systems that have been previously implemented. Each of the systems will be described briefly, and
its place in the taxonomy of the previous chapter will be explained. That taxonomy will also be used

to describe simple changes that might significantly improve the help system.

In what follows, reference will be made at several points to “uscrs’ comments”. These are simply
the comments users made in response to a very open-ended survey about help systems. Users were
asked, among other things. to provide examples of the best and worst examples of help systems they
had used, along with their ideas about why these systems were good or bad. The responses displayed
an interesting tolerance on the part of the users; many more positive comments were made than
negative oncs, even in the case of extremely simple-minded or even obviously poorly-designed help
systems. It scems that users are so grateful for any help at all that they tend to mention the positive
more often. Or, perhaps their experience with getting help is so generally negative that anything at
all helpful really stands out in their minds. Typical comments began “T hardly ever find help systems
uscful, but...” The observations below are based on the “buts™ these users provided, and (in many
cases) on observations of experienced users of the systems trying to get the help systems to help them

perform new tasks.

30 ' THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

3.1.1. TOPS-20

TOPS-20[22] is an operating system that runs on large DECsystem-20 computers. Its help system
can be briefly characterized as coming in two poorly integrated parts. The first part is a very simple
key word help mechanisim, with a simple syntax (*HELP <command name>”), a rudimentary
presentation method (simply printing text, no scrolling or windowing), and pre-written text of erratic
quality. 'The sccond part is a context-dependent help mechanism, invoked by the simple method of
typing cither ESCAPE or a question mark at any point in a command linc. 'This provides an
extremely short help message, without the possibility of obtaining any further information in context.
The help system is completely human-initiated, and although the context-dependent help is well
integrated into the system as a whole, the help system overall suffers from a very low level of

integration.

TOPS-20 had the help system most commonly cited as "best” in my user surveys.]2 The biggest
advantage of TOPS-20 appears to be the nearly uniform availability of context-dependent help.
Users can get very short syntactic help at any time by typing a question mark. However, there is only
one layer of context-dependent help available. If the user doesn’t learn what he needs to know from
the short help provided, he can't find out any more in context. In such a case, the user must resort to
TOPS-20’s second help system. a very primitive key word system. 'T'o use the key word system, the
user must abort any partial command context, and issue the “"HELP" command to the operating
system. “HELP" must be followed by the name of a TOPS-20 command; such a request will cause
the entire documentation on that command to be printed on the user’s terminal, without even

pausing after each screenfull of information.

Obviously, TOPS-20 suffers from a very low degree of integration. (In fact, it was in the
observation of a subject using the TOPS-20 help system that the need for help system intcgration first
became apparent, as explained in Section 2.3.) Merely being able to access both help systems from
an embedded context -- that is, to issue key word help requests without forfeiting one’s command

context -- would be a significant improvement.

However, the improvement would be more significant if the key word help that was being
integrated was of a higher quality. TOPS-20 offers no help at all to the user who does not already

know the name of the command he is trying to use; there is no provision for lookup of synonyms.

IZOF course. TOPS-20 is also one of the most widely-used of the systems listed here. Nonetheless. the mentions of TOPS-20
were almost uniformly positive.

A SURVEY OF EXISTING HELP SYSTEMS 31

There is also no conceptual help: help is provided only for commands, not for such vital concepts as
“file™ and “directory”. All of thesc could casily be provided without significantly changing the
TOPS-20 help access methods.

Additionally, the presentation of TOPS-20's key word help Ieaves obvious room for improvement.
At the very least, it could casily be modified to pause after each screen full of information had been
printed. (Actually, a TOPS-20 terminal sctting command can achieve this effect, but it is not a part of
the help system, is not documented with the help system, and is hence effectively unknowable for
novices.) With only a little programming cffort, such texts could be made to scrolf through the top of

the screen while preserving context in the bottom.

Finally, the quality of the TOPS-20 help texts is erratic, a common circumstance in a system where
the drafling of help texts has been left 1o the implementors of the relevant programs. Some of the
texts arc of quite high quality, but this is largely a matter of chance and the temperment of the

individual programmers.

With all of the criticisms listed here, it is worth noting again that TOPS-20 is commonly cited as
having onc of the world’s great help systems. This reputation is probably in large part attributable to
its competition: few other operating systems offer any kind of context-dependent help at all. The

feature does scem to be enormously popular with users.

3.1.2.Emacs

Emacs in both its UNIX [44] and TOPS-20 [115] versions provides an interesting assortment of help
features. Each provides two kinds of help: a straightforward menu system, and a context-dependent
help system which is activated by typing a help character at various points in the middie of
commands. These two help components are entirely non-integrated. As with so many other systems,
the text's varied origins are reflected in its erratic quality. The initiative is primarily human, although
some versions of Emacs automatically invoke the context-dependent help when certain command
errors are made. (This is a customization option; users can choose whether or not to let the computer
take the initiative in such situations.) The presentation methods are fairly sophisticated, preserving
context or restoring it when finished, which is not surprising in a text editor which already
implements a great deal of screen management software. Help texts are primarily pre-written, but are
generated dynamically in certain cases where the information is highly context dependent (e.g. a list

of valid commands, which depends on what extension packages have been loaded).

32 THI DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Probably the most common complaint about these systems is the lack of uniform availability of the
context-dependent help. This is because packages written in Emacs™ extension languages do not have
casy access to the context-dependent help-mechanisms. This fact and the fact that the two help
system components are entirely independent lead to the characterization of Emacs as having an

extremely non-integrated help system.

Especially interesting is that, despite the structural similaritics of the two systems, the TOPS-20
version of the help system generally scems to mect with much more approval from its users than the
UNIX Emacs help system. This is not the case with Emacs in general, which scems to be better liked
on UNIX. Possibly the difference can be attributed to the fact that the menu system in UNIX Emacs
is very loosely structured, forming a menu tree that is too bushy and not deep enough. This
underscores the need for careful structuring of a menu system, and may be scen as a failure of UNIX
Emacs to meet the general requirements of menu help systems. Of course, other factors may also be
responsible. but I have not yet isolated any. In general, the help systems are sufficiently similar in
mechanisms that it seems hard to avoid the conclusion that any differences are due to content - help
text and menu structure -- rather than to the help mechanisms themselves. (The different perceptions
of the Emacs help systems may also be due in part to differnces in their user communities, but the
perception seems to hold even among those who use both. Many UNIX Fmacs users have moved
from TOPS-20 because they prefer the UNIX version, but remark that the only thing they miss is the

help system on the TOPS-20 version.)

3.1.3. UNIX

UNIX[118]. the well known operating system which runs on a wide variety of computers, was
widely cited in my user surveys as an cxample of both a good and a bad help system. Its help system
1s based entirely on the key word approach. There are two key word help commands. The man
command can be used to print out the entire documentation for a UNIX system command. The key
(or. on some systems, apropos) command will take a single key word as its argument and will suggest
a number of commands that may be related to the key word; such commands can then be looked up
with the man command. The system is entirely human-initiated. Access complexity is slightly higher
than it should be, in that there is really no reason why key and man need to be separate commands; a
single help command could act like man when its argument is a command name and like key when its
argument is not. System integration is also fairly poor; the help is only available from the top
command level, with a very few cxceptions, and there is no special provision for the common

situation of choosing one of the key command’s suggestions as the argument to the man command.

A SURVEY Ol EXISTING HELP SYSTEMS KX

Presentation methods are erratic: 'The man command’s output is paginated, so that it won't write
more than a screenfull of information at a time. The key command is not so carcful, but its output is
not often longer than a single page anyway. All of the texts arc prewritten, although the key
command docs sclect very small picces of the provided texts. As in most systems where programmers
write the documentation, the text quality is crratic, but not as much so in a system such as TOPS-20,

where some of the text is quite good. On UNIX, the text is almost uniformly bad.

'The popularity of the UNIX help system scems to stem from the fact that the key command
constitutes a reasonable index to the on-line manual. (that is, key words often suftice to find the
command you’re looking for cven if you don’t know its name.) A few individual complaints about
UNIX’s help centered on particular failings of this indexing scheme, which is uscful but certainly not
optimal. (The key command only recognizes as relevant key words those words which occur in the
first line of a command's documentation. 'This is better than only recognizing a command name, but

not nearly as uscful as a true thesaurus-based or cxplicitly-specified key word system.)

Other problems with the UNIX help system include the lack of any context-dependent help and
the incredibly slow performance of the man command. (The man utility reformats its help texts with

a text processor every time you ask for help, a staggeringly poor design decision.)

The fact that many users seem to like UNIX's help system despite its manifold defects is indicative
of the high value of key word help systems that can aid users who do #not know the name of the
command they are trying to usc. Aside from the mechanism which reformats help texts every time
they are printed, the UNIX help system is a fair example of a well-designed, nearly minimal key word
help system -- that is, a system which can help its users with only a modicum of actual help
mechanism. Experiments in this thesis, reported in Section 7.1, suggest that such a system is indeed

highly useful when the texts it provides are of high enough quality.

3.1.4. PLOT

PLOT [30] is an interactive program for producing graphs from sets of data. PL.OT provides key
word style help, but like TOPS-20 requires that the user already know the appropriate command
name in order to access this help. Some context-dependent help is available in the form of a list of
syntactic options at some (but not all) points in the command line. A very good tutorial for novices is
also available. In addition. a special provision is made for editing the entire manual with a text editor.
The system thus provides a wide variety of access methods, as an integral part of the application but

with the help access methods not at all integrated together. The presentation methods are very

34 THE DESIGN AND EVALUATION Ol ON-LINE HELP SYSTEMS

simple, with text simply printed on the screen as if it were a teletype, but the text is generally
presented in small cnough picces that the user’s context is not entirely lost; he can still see what he
was doing at the top of the screen. With the exception of the tutorial, the initiative is completely the
user’s. Quality of the texts, all pre-written, is unusually high, reflecting the fact that they were written
by a single author (Ivor Durham) who was highly concerned with making the system casy for novices

to understand.

PLOT's help appears popular primarily for its completeness, both in terms of conient and the
number of ways of accessing the help information. Its failings usually appear as failures of
completeness, which, given the enormous amount of effort involved in its on-line help, points to the
desirability of a uniform help database. Typically, information available via onc of PLLOT’s help
mechanisms is not available from the others, so that users have to keep trying them until one is found
satisfactory. The lack of uniform availability of context-dependent help is also a deficiency. Thus
PLOT appcars an excellent example of how a help system can be very good on most of the details

and still suffer from a lack of integration.

3.1.5. Shepherd

Shepherd [105] is a system designed to manage source files for SAIL programs and to organize their
documentation. The system includes a component that serves as an on-linc help system, organizing
the information about the SAIL library into a menu-like tree structure. The system is noteworthy for
the attempt to provide uniform documentation facilities for a variety of programs written by different
programmers in different contexts. Unfortunately, the program is extremely slow and the interface
cumbersome, so that the system was apparently never heavily used nor well-liked. This example
illustrates the importance of access complexity. FEven with a fairly large database of useful
information, the program was poorly utilized, largely because the interaction syntax was frightening,
As remarked before, this is even more likely to be prohibitive in a help system than in other
interfaces, because users begin using help systems with an already-high level of frustration and in a

state of acute awareness of their own ignorance.

3.1.6. CMU LISP

Before the reader concludes from the previous example that a complex access mechanism is the seal
of doom for a help system design, he should consider the case of CMU LISP. CMU LISP [19] has a
large and apparently thorough static help system using a menu approach. As with Shepherd, the

mechanism for accessing the help is cumbersome. Each node in the tree of help menus has a unique

A SURVEY OF EXISTING HELP SYSTEMS 35

name, and must be accessed by it. Typically, cach node also lists some other nodes that are related,
but provides no casy way for the user to get to it. Thercfore he must generally type "help” followed

"o

by "help foobar.” "help foobar.options,” “help foobar.options.details,” and so on. 1n addition to the
cumbersome syntax for help requests, the system suffers from primitive display methods and erratic

text quality.

Despite its flaws, which also include the total absence of context-dependent help, CMU LISP was
mentioned only positively in the user survey, possibly because so few programming language
environments offer any help at all. The system was praised for the completeness of its database,
which is of course a factor of overriding importance. Apparently users were generally able to gci the
information they needed from CMU LISP's help system; the information was there and was not
impossible to obtain. In this case, the users were willing to forgive the system its other flaws. Future
designers of programming language environments, including syntax-based editors, would do well to
consider the popularity of CMU LISP’s help system, which had no context-dependent features at all,
before they devote too much time to the mechanisms of their environments and not enough time to

the contents of the messages provided.

3.1.7. TOPS-10

TOPS-10 is an operating system that runs on DECsystem-10 computers. The Carnegie-Mellon
University TOPS-10 help system [18] is composed of just two commands used to access help in a key
word system. "Help <topic>" gets a short message explaining the topic. while "Doc <topic>" elicits
more details. Most topics are simply program names, but a few more general topics also exist. For
example, “help dialup” yields a list of phone numbers for diatup lines. There is no indexing and no
context-dependent help. The two commands are totally unintegrated. and the presentation method is
the most basic possible: the texts are printed on the screen without even a pausé as the page fills up.
Texts are of predictably erratic quality, given that they are written in general by the implementors of

the programs they describe.

In short, TOPS-10 help is about as simple and primitive as possible, with the exception of the
unusual fact that there are two levels of detail available. Nonetheless, this simple fact was enough for
several users to single it out for praise. This appears to indicate a great appreciation on the part of
users for some structure in the help database. Those who commented favorably about this aspect of
TOPS-10 help appeared to be mostly people who had otherwise used only systems that provided all
the help in a single undifferentiated mass. Again, users are so accustomed to absolutely minimal help

systems that they arc grateful for cven the smallest improvements.

36 THE DESIGN AND EVALUATION OI' ON-LINE HELP SYSTEMS

3.1.8. Lotus 1-2-3

1otus 1-2-3 [84] is an interactive spreadshect/database program on the IBM PC and other personal
computers. [t incorporates (as onc of its major sclling points) a very impressive help system. The
basic system is menu-driven for commands, with one menu item always highlighted on the screen as
"selected.” A sccond-level menu is continuously updated to display what the menu choices would be
if the currently selected menu item were chosen. This provides a form of context-dependent help
without human initiative. In addition there is an claborate static help menu, which is often entered in
a context-dependent manner -- the starting help menu is chosen according to the user’s context. The
texts are apparently all pre-written and are of extremely high quality, reflecting an obvious emphasis
on documentation by the Lotus Development Corporation. As one would expect in an integrated
system such as Lotus, presentation methods are sophisticated, with the screen carefully managed to
preserve context when possible and to restore it later when it was necessary to overwrite important
state information with help texts. The complexity of help access is extremely low; it is an excellent

example of what a menu-based help system should look like.

The menu itself is generally very well-structured, making it very casy for novices to learn about the
system. For experts, the story appears slightly different. The one experienced Lotus user [was able
to interview did not think very highly of the on-linc help, because she was unable to easily get
answers to specific questions. 'The menu system apparently thwarted her in her quest to quickly
answer such questions. ‘This suggests that even the most claborate menu systems may be insufficient
as complete help systems, and that a key word component will be extremely valuable to experts.
(Limiting a help system to step-by-step traversal of a menu network seems a bit like taking away a
driver’s mode map and forcing him to find his way over a long distance using only road signs.)
However, since the user reported that she often simply could not find what she wanted with the help
system and resorted instead to the printed manual, another explanation is possible: it may be that
Lotus’ help database is simply not sufficiently comprehensive. Obviously if the information isn’t

there, the user can’t find it, no matter how clever the help access mechanisms might be.

3.1.9. RdMail

RdMail [67, 31], a TOPS-10 mail management program, was singled out for a large number of
comments, both positive and negative, in the user surveys. Its help is entirely key word based, but
with sufficient indexing to make it quite often useful even when the user does not know the name of
the command he needs to use. The system uses key words as indices into the printed manual, and

prints out the sections that secem to match the key words. No attempt at screen management is made.

ASURVEY OF IXISTING HELP SYSTEMS 37

‘The text quality is quite good, reflecting the cffort that went into the writing of the RdMail manual.
‘The help system is simple to use, and since only onc help mechanism and onc command level are
provided, integration is not really an issuc. ‘There is no notion of levels of explanation, and no

context-dependent help except in the correction of spelling errors.

A common complaint about RdMail’s help system was the volume of material help requests can
clicit; typically a help request will cause RdMail to select a half dozen or so paragraphs of help text,
and will show you the heading of cach and ask if you want to sce the entire section. ‘This illustrates a
problem that comes as a natural consequence of a thorough key word index: too many commands
may match a given key word. In such a system, it is important to provide a simple mechanism --
some form of menu sclection is the obvious choice -- by which the user can choose among many
possibly relevant topics. RdMail asks a yes or no question for each such topic, which is time-
consuming and often frustrating for the user, since the desired information is just as likely to be asked

about last as first.

Another common complaint about RdMail is that the key words are simply poorly chosen; it is
difficult at first glance to reconcile this with the complaint that key words yicld too much
information, but they may in fact be the same problem. Users who begin iterating through the many
choices key word produces in RdMail may simply conclude that they have chosen the wrong key
word and give up, never realizing that they had the right key word but simply had to sit through a

large number of wrong choices before RdMail would give them the right one.

3.1.10.Ci

Ci[106] is a command-interpreting front end for UNIX application programs. It provides key
word static help, using short descriptions for its indexing much like the UNIX key command
described above. It also provides a special character ('*’) for requesting context-dependent help;
placing this character in a comrnand line turns the command line into a request for syntactic help in

many contexts. Texts are supplied by the application programs.

Ci is interesting primarily in contrast to TOPS-20. TOPS-20 offers a less complex help interface --
typing a question mark in the middle of a command line, and maintaining context, is certainly easier
than typing an entire line with an asterisk marking the missing information -- but ci integrates the
context-dependent and key word help systems to a greater degree than TOPS-20. In TOPS-20. the
application programmer may design his subcommand interfacc to utilize the built-in help

mechanisms only for context-dependent help, wherecas ci-based UNIX applications can take

38 THE DESIGN AND EVALUATION OF ON-LINE HELP SYS TEMS

advantage of both types of help. Unfortunately, the number of ci-based applications is not very large,
so it is not possible to tell from experienced users whether this docs in fact make the ci help facility

significantly better than TOPS-20's.

3.1.11. VM/CMS

VM/CMS [58] is a widely-used IBM conversational opcrating system. It incorporates a menu-
based help facility that scems very complete with respect to the programs documented, but less
satisfactory with regard o fundamental concepts of the system. A modicum of context-dependent
help is provided as context-dependent entry to the menu system. One bad feature of the system as a
whole is the complexity of its user interface; most programs can take commands cither via a
conventional command line or through a sophisticated graphical interaction program, but the two

methods of giving commands arc not equally well documented in most cases, for no apparent reason.

This is a difficult problem to avoid: the difficulty of providing a coherent integrated help interface
seems to increase dramatically as the fundamental underlying complexity of the system increases.
Those who regard the fundamental VM/CMS interface as too complex would probably claim, with
some justification, that trying to fit a good help system onto such a complex underlying domain is a

task doomed from the start.

3.1.12. SARA

SARA [34, 35] incorporates an experimental help system most noteworthy for its representation of
help information rather than for its presentation of it. Help is available through queries of a static
database in a rigid command language, although what is actually happening is quite similar to the
CMU LISP method (Section 3.1.6) of accessing a menu network by giving the full name of each help
frame. The ability of the system to provide context-dependent help is restricted by the inability to

process input one character at a time, which virtually rules out meaningful context-dependent help.

SARA was probably the first system to approach on-line help as an intcgrated database to be
probed with multiple access methods. As such, it was a significant landmark, inasmuch as the
integration of multiple help functions is considered to be an important component of good help
systems. However, most of the work on the SARA system focused strictly on that database
representation of help information; after it was constructed, only a single help access method was
actually implemented to use it! The data reprcscntétion used in the prototype help system described

in Scction 5 is derived in some measure from the representation used in SARA.,

40 THI: DESIGN AND EVALUATION OIF ON-LINE HELP SYSTEMS

3.1.16. ANLHS

ANLHS[117] is an ambitious attempt to design a natural language question-answering help
facility. The author is principally interested in the knowledge representation aspects of the problem,
and is apparently largely ignoring the interface with the end user. (This system will receive help
requests in a formal language, and is not designed as the front end of the final system.) Several
cfforts are currently under way to apply natural language to the domain of help systems, but the
experimental results reported in Section 7.1 tend to cast some doubt on the gencral usefulness of this

approach.

3.1.17. Z20G

20G [97,99,101] is the menu system par excellence. The ZOG system was developed as an
integrated user interface based entirely on menus. The system includes a well-fleshed-out help
system, which is naturally entircly menu-based. (However, the fact that help is always invoked from
some known previous menu loation allows the help to be somewhat context-dependent with no
special effort at all.) The system places a premium on integration, and the help facility is entirely
integrated with the system as a whole. The system evolved in an atmosphere of extensive testing and
refinement of all of the details of the system, with the predictable result of a smooth interface,

minimal interaction complexity, and high quality texts and presentation methods.

Because the help system is embedded in an interactive system that is entirely menu-based, the
menu approach appears to completely eliminate the need for syntactic help. This is in keeping with
the general ZOG philosophy of an extremely straightforward and consistent user interface, With
such an interface, help needed is nearly always conceptual rather than syntactic, and for this menu
help seems to suffice. However, this sufficiency of menu help probably does not generalize to the
non-ZOG environment, where command syntax can be extremely complex, and where large

branching factors may make a menu system unwieldy.

3.1.18. COUSIN

The COUSIN project [42, 50, 51, 52, 53] has been an evolving series of systems investigating
cooperative user interfaces. In its early versions, COUSIN used ZOG’s menu system to automatically
generate help of various kinds for non-ZOG interfaces. This has manifested some of the fragility of
the success of ZOG's help facility. In the non-ZOG context, help was not always sufficiently cross-

referenced, with menu frames taking on inappropriate sizes and inadequate links. Nonetheless the

A SURVLY OF EXISTING HHETP SYSTEMS 39
3.1.13. How?

HOW?[56] is an associative nctwork-based help facility for LISP, most interesting for its
knowledge-based approach. The help database is a network suitable for normal menu traversal, but
may be accessed via key word requests which are interpreted in a sophisticated and flexible manner,
using a complex LISP program. It provides no context-dependent help, and the presentation and text
quality have not been emphasized, since the rescarch has focused on knowledge-based interpretation

of help requests.

Such interpretation focuses primarily on questions of customization and user state and history. The
primary advantage that this knowledge seems to offer over more naive key word approaches is in a
pruning of the search space for highly ambiguous requests. The idea of using knowledge about user
state, preferences, and history (o disambiguate help requests has obvious appeal. but it will probably
be a difficult one ever to test conclusively. Such tests would of necessity monitor users over a rather
long term, as they developed a history of using the system. Thus it is unlikely to be seriously tested

until an implementation is carricd to the point of being practically useful in a well-uscd environment.

3.1.14. The |A Tutor

The TA Tutor [103] is an on-line intelligent tutor for a specific application, namely a military
message service. T'he wtor uses a fairly simplistic knowledge representation to gucss about the type
of help a user needs, utilizing in the process a fairly extensive user profile for customization and
individual tailoring. As with HOW?, there is no evaluative data available, and the “intelligent”

component can not easily be studied outside its unique task domain.

3.1.15. WIZARD

WIZARD [37,109] is a knowledge engineering cffort that produced a small help system able to
volunteer advice based on preconceived “plans’” and “bad plans™ it hypothesized might be in the
user's mind. As such. it is an unusual example of a help system in which the initiative rests almost
entirely with the computer rather than the user. It apparently docs a good job helping novice users of
VMS, but would require a great deal of effort (both initial and ongoing) to become a practical help
system for VMS in general. Such systems will need to be much more thoroughly understood before
they can be integrated with the kinds of help discussed in most of this thesis, and before they can be

studied in sufficiently complex domains to be rigorously tested against more conventional systems.

A SURVEY OF' EXISTING HHELP SYSTEMS 4]

system demonstrated that much can be done by way of gencerating both static and context-dependent

help from a static database.

Later COUSIN systems have offered more sophisticated context-dependent help in the context of
its unusual interaction methods. Such help methods correspond closely to the kinds advocated in this
proposal. In gencral, though, COUSIN has concentrated on minimizing the need for help rather
than on giving claborate hclp, so the help systems that have been implemented have not been fleshed
out with sufficient texts to test them thoroughly. A fascinating tepic for future research would be to
develop a version of COUSIN that incorporated some of the help techniques recommended here,
and to test various subscts of that COUSIN to see which features are most important for enab]ing
novice and expert users to exccute unfamiliar tasks. Without such studies, it is virtually impossible to

weigh the relative importance of graceful interaction paradigms and clever help systems.

3.1.19. STAR

The STAR system [111] is a workstation that uses icons and graphics to provide its fundamental
interaction mechanisms. STAR provides key word static help, with help entries pointing to other
entrics in a menu-style network, without menu access mechanisms. A limited amount of context-
dependent help is available in the form of context-dependent behavior when help is invoked.
Syntactic help is apparently not provided becausc it is expected that the unusual interaction paradigm
of the STAR system (graphics and icon-based) will eliminate most of the need for such help. The

validity of this expectation remains untested.

3.1.20. The Berkeley UNIX Help System

A new help system [66] in use at the University of California at Berkeley utilizes the UNIX
dircctory structure as an easy way of implementing a tree-structured menu help system. The system
allows for progressive decpening and can suggest related topics using this menu mechanism.
However, as with some of the other menu-based systems reported above, this help system requires an
extremely baroque syntax to specify movement through the help menus. As such, its practical
usefulness is questionable. Since the system has been relcased for general use at Berkeley, it seems
likely that thesc qucstions will be answered, and this system as it evolves should provide some
interesting data on the usefulness of menu-based help systems with awkward access mechanisms.

However. no such data is yet available, as the system is still brand new.

42 THIE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

3.1.21. UC: The UNIX Consultant

Wilensky [122] reports on an experimental help system that answers questions about UNIX in
natural language. Unfortunately, the system is both too slow and insufficiently broad in its database
to be uscful to real users, but it demonstrates that natural language may in fact cventually be
practical, from an implementation standpoint, as a help system interface. Whether this would be
desirable is another question, and the results reported in Section 7.1 of this thesis cast doubt on the

entire enterprise.

3.1.22. The MACSYMA Consultant

Genesereth [40] described a help system for MACSYMA that would utilize a knowledge base to
analyze user help requests in terms of faulty plans, goals, and so on. As such it is a clear precursor of
the WIZARD system reported above. However, it is unclear whether the MACSYMA consultant
was ever completed, as [have been unable to locate any later articles; the article cited described a

nearly-completed, untested system.

3.1.23. BROWSE

BROWSE[11, 12] is an on-linc system for providing help for UNIX. It is an extremely powerful
static help system, integrating excellent menu and key word help. However, it is implemented as a
stand-alone utility, which means that it has no context-dependent help and cannot preserve the user’s
screen context when it is invoked. The system has also been used as the front end for a system for
viewing structured text [124]. In general, it looks like ZOG with keyword help attached, but designed

to run on lower-cost display hardware than is required by ZOG.

The BROWSE system described above should not be confused with the identically named sytem of
Palay and Fox [82], a system designed to facilitate “browsing through databases.” The latter system
integrates menu-based “browsing” with more traditional parameterized search of a database. In the
database system, of course, parameterized search can reasonably be much more complex than a
simple key word, but such complex scarch expressions arc less clearly desirable in the narrower

context of on-line help.

A SURVEY OF EXISTING HELP SYSTEMS 43

3.1.24. INTERLISP DWIM

Interlisp’s DWIM facility [116] is not a help system in the sense studied in this thesis, but is worth
noting as an cxample of the extreme toward which some help systems seem to aspire. DWIM stands
for “Do What I Mean™, and can be used to correct a large number of syntactic errors in Interlisp
programs, cither automatically or with user confirmation. DWIM is able to be successful in this
effort largely because of the extremely regular and straightforward syntax of LISP. Applying its
techniques in less regular domains will inevitably yield less spectacular results, but is certainly worth

studying.

3.1.25. SPF

The IBM System Productivity Facility [S9] incorporates a sophisticated help and tutorial system.
The system is essentially menu-based, with a strong bias toward walking a “standard™ path through
the menu network, but it also provides limited facilities for keyword search through the network, and
allows context-sensitive invocation of help (that is, the root menu frame varies with the context in
which help is requested). The SPF help facility appears to be entirely integral; documentation and

application program arc incxtricably bound together at the programming level.

3.1.26. Symbolics Sage and Document Examiner

Janct Walker’'s work on on-line documentation [119, 120] has produced interesting results in two
areas relevant to this thesis. Her Sage system [119] provides a highly structured mechanism for
constructing help databascs, rather like Fenchel's SARA or the ACRONYM system developed for
this thesis, but with a more rigorously constrained document structure. Whether such structure is
good, of course, depends on whether the basic parts chosen for that structure are the right ones,
which is a difficult assessment to make. However, Sage clearly provides more power to the
documentation writer than the other systems, by virtue of its highly structured and integrated
environment, possibly at the cost of making the documentation occasionally strained to fit into the

prescribed format.

A more recent development is the Symbolics Document Examiner [120], a system utilizing the large
high-resolution display of a Lisp Machine to provide help via key word and menu selection, with an
unusual facility for using “bookmarks” to remember the user’s previous history of especially
successful help requests. The system can be accessed in a context-dependent manner, at least when

looking at a LLISP program. It appears to correspond closely to the state of the art in help systems,

44 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

something like the ACRONYM system developed here, but designed to take advantage of modern
workstation display technology. As of this writing, no description of the Document Examiner has

been published.

3.1.27. CRAS

The on-line help system for CRAS (Cable Repair Administrative System) [43] at AT&T reflects a
deliberate effort to integrate on-line help with on-line documentation design and more traditional
user's manuals. Special facilities arc provided both to reduce the need for paper documentation and
to provide tools to help users keep their paper manuals up-to-date. The help system is highly integral
to the CRAS application systein, even utilizing CRAS file structures and software as part of the help
database.

Despite the care given to complex information handling, CRAS'’s help system is extemely limited
from the user’'s end. There is no context-dependent help, ne menu system, and no keyword help
worthy of the name. Instcad, a few simple commands arc used to extract help from the database, and
tihe relevant application programs tell how to get that help as part of their error messages, e.g. “For
more detail type: prtdoc cmd.rpt02”. Thus, despite the complexity and effort involved in the
database, CRAS’s help offers very little in the way of help functionality to the user. If. however, this
is the price which the designers paid in order to make the actual help texts extremely readable and
usefull, then the results of this thesis tend to validate that tradeoff. Unfortunately, the published
description of the system gives no indication that text readability was emphasized, and no samples of

the actual texts.

3.1.28. DOCUMENT

DOCUMENT [41] is a help system primarily geared to producing on- and off-line help from key
word requests, where all key words were supplied explicitly by the document designers. The system
is especially notable for its support of multiple interaction styles; there are threc levels of expertise,
and the verbosity of prompting and error messages varies with the expertise level. Expertise level
may be specified explicitly, but the system will sometimes revise its estimation of a user’s expertise
based on that user’s actual performance. DOCUMENT is also noteworthy for the care given to

integrating the delivery of paper and on-line help in an extremely complex user environment.

A SURVEY OF EXISTING HELP SYSTEMS 45
3.1.29. Thumb

Thumb [85] is a system that weds on-line help to the kind of search mechanisms generally reserved
for infrormation retricval systems. Documentation is carcfully encoded in such a way as to finely
describe its structure, and is then accessed with complex scarch commands. The resulting language is
extremely powerful but baroque; the paper on Thumb [85] cites an example in which “about rain
interacting with night” and “about rain occurring with night” match different sets of texts for which
“rain” and “‘night” arc keywords. Although the primary mechanism is this kind of complex keyword
scarch, menus arc provided at points of ambiguity. Context-dependent help is apparently not
provided. The complexity of the mechanisms suggests that such methods may remain more

appropriate for general information retrieval than for the specific task of on-line help.

3.1.30. Transition Diagram-based Help

Feyock [36] describes a planned help system which would utilize a transition diagram
representation of the user’s state to generate help messages. In his discussion of the representation of
the user's state, Feyock anticipates much of the command grammars that have been used
subsequently, including in this thesis. He gives little attention to uscr input, which he correctly sees
as being casily implemented in a number of ways with the single database. More surprisingly, he
completely disregards the role of help texts, assuming instead that the representation of a state in the
command grammar will casily yield readable help messages: “Once such a [regular] expression has
been generated, a simple recursive routine suffices to output the regular expression in a quite readable
Jormat.” The results of this thesis, however, suggest that the construction of readable texts is the most
important single part of help system design. At a minimum, it must be said that there is no evidence
at all to support Feyock’s claim that automatic gencration of texts can, in our current state of

knowledge, produce high-quality help messages.

3.1.31. ACTIVIST and PASSIVIST

Fischer, et al. [38] describe a knowledge-based help system that can act both actively (making
helpful suggestions, in a manner similar to the WIZARD system described above) and passively,
interpreting help requests given in natural language. They concentrate on the underlying knowledge
representation supporting the help systems, rather than on the details of the user interface. As with
WIZARD, there is no evidence presented to prove that the knowledge-based systems actually gain
anything over the more traditional approaches, but instead the authors accept this as being simply

obvious to anyone who considers it.

46 THE DESIGN AND EVALUATION O ON-LINE HELP SYSTEMS
3.2. Perspectives from Other Domains

In thinking about help systems, it is useful to think not only about what has been done in on-line
help for software, but also about analogous methods that have developed in other domains in
response to the problem of informing the user about the tool at his disposal. A comprehensive survey
of such areas is beyond the scope of this thesis, and indeed is probably impossible. However, I will
discuss here a few of the rclated problems that have helped me in thinking about help systems.
Heckel’s enjoyable book [54] gocs into much greater detail with a large number of analogics relevant

to interface design.

3.2.1. Highway Navigation

In navigating an automobile, there are two primary help systems. The road map is a static help
system, which provides a stable and (it is hoped) consistent picture of the task domain. This is most
useful for general orientation and for high-level planning, as well as for problem-solving when errors
occur. Road signs, the second help system, are by contrast highly context-sensitive, and are useful

primarily for making low-level decisions in a hurry (e.g. “Do I turn here? Right or left?”)

The driver of a car on the U.S. highways today faces a system as vast as nearly any software system
yet devised, but despite well-known and oft-discussed exceptions, generally manages to find his way

with little trouble. Why is this so?

To begin with, the driver usually benefits by well-defined context. It is exceedingly rare to see a
road sign in California that points to Manhattan, which is as it should be given the percentage of
drivers in the area whose ultimate destination is on the East coast. Indeed, it is unlikely that more
than a small fraction of California drivers even have a map of New York in their cars. This is in sharp
contrast to the typical computer uscr, whose “road maps™ are the myriad paper manuals that line his
walls, even if he has no intention of ever using most of the features they describe, and whose “road
signs” are most often on-line help systems that point, with equal cheerfulness, to every feature on the
system. (A road sign comparable to such help systems might read “Exit 22: Ho Chi Minh City, New
Delhi, Spokane, Chicago, Forbes Ave.™)

Of course, most computer systems do not begin with the clear usage patterns and locality of
reference characteristic of a highway system, but this does not mean they cannot evolve in such a
direction. Certainly it is reasonable to imagine a help system smart enough to say, “Hmm, this user

doesn’t do anything but word processing, so I really don’t nced to tell him about the debugger’s

A SURVEY OF EXISTING HELP SYSTEMS 47

symbol table even if he did type help symbol'.” Moreover, it is also reasonable to design future

systems to promotc a clearer division of task categories, which will facilitate context-sensitive help.

Consideration of the imaginative gencrations of work that have designed the modern road map are
also worthwhile. A road map is a static picture of a very large object. Nearly every such map,
nowadays, comes in a very unusual form: an cnormous page of paper cleverly folded to facilitate
looking at smaller parts of it at a time. Perhaps computer manuals can be imaginatively reformatted
to facilitate a large number of help situations. Some of the conventions used in maps -- most notably,

insets showing details at different scales -- may also be relevant.

There is a large amount of literature on traffic signs and marking, some of which I surveyed in my
rescarch on help systems. While surveying it, I dismissed it as gencrally irrclevant, much to my
disappointment, because it concentrated on such “mundanc” factors as the proper height of lettering
on the signs, the proper colors of signs, and so on. (See, for example, [70].) In retrospect, given the
results of the experiments reported in this thesis, it seems that 1 might have properly regarded this
emphasis as a warning that my preconceived notions about what is most important in a help system

might have been entirely misguided.

It is also worth considering, with regard to the current vogue for iconic user interfaces, the system
of international symbols that has come, in recent years, to decorate the world’s roads, airports, and
other public places. Ncarly everyone can tell a story of coming face to face with an international
symbol, designed to be meaningful even to savages from the most obscure corners of the globe, and
being utterly baffled by its meaning. Many iconic interfaces coming onto the post-Macintosh market

seem equally poorly chosen.

3.2.2. Driving a Car

For better or for worse, most people seem to learn to drive both their first car and any subsequent
car without once opening the owner’s manual. That they prefer to do so is a motivation for designing
“self-evident” software. That they are able to do so is a motivation for studying the layout of an

automobile’s controls.

The basic controls of an automobile are, of course, relatively uninteresting and the same for nearly
ever car. Stecring wheels, brakes, and gas pedals are the apparently inevitable results of decades of
tinkering with real pcople operating real machines. The few points of variation are relatively minor,

cnough so to be casily indicated by a small picture, as in the map that tells where the gear positions

48 A THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTIMS

arc on a manual transmission. Desirable though such a situation cvidently is, it seems unlikely to be

matched by software systems for a long time,

More interesting is the design of the peripheral controls -- such things as the lights, radio,
windshicld wipers, and so on. With less intrinsic reason to standardize, these features vary wildly
from one car to the next. In most American cars, the controls arc labeled in English, but increasingly
cars are built for worldwide distribution, and are labeled with cryptic and often meaningless icons.
How do most people deal with these peripheral controls? Trial and error. Fach dial is turned, each
switch flipped, each knob pulled, until the desired cffect is achicved. Crucial to this process are two
assumptions on the part of the user: nonc of the controls can produce a harmful effect, and the set of
things he’ll need to try is very small. These assumptions arc virtually never truc for software systems.
Help systems can only sometimes help to make them true, and hence to facilitate explanations; more
often, it is in the underlying application interface design that these assumptions are violated. That’s

one rcason people use software manuals more than the owners’ manuals for their cars.

3.2.3. Small Appliances

The average American today uses a wide variety of small mechanical devices that, scemingly at
least, make his life a bit easicr. While the quality of the instructions that accompany these devices
varies substantially, some of the techniques used in the better ones seem applicable to help systems.
Most notably, some food processors and similar appliances have a few pictures on them, carefully
designed and strategically placed, that seem to entircly obviate the manual for most situations. This
technique of designing for the most common need is virtually never applied in help systems, but would
be obviously useful there. Most help systems require the same amount of effort to answer the
simplest questions as the hardest and least common ones. (In fact, the ACRONYM system described
later in this thesis shared that deficiency, and even made some of the simplest tasks harder to get help
for than some of the genuinely difficult tasks. See Figure 7-5, on page 99 and the accompanying

text.)

3.2.4. Human Experts

Of course, the best help systems for almost any applications seem to be human experts. Such
experts offer at least five things other systems generally lack: spoken input, spoken output, natural
language, immediate recognition and processing of feedback when explanations are inadequate, and

empathy. The importance of any of these should should not be underrated.

RELEVANT PREVIOUS RESEARCH 49

Chapter 4
Relevant Previous Research

The literature describing human factors research on computer software is small but growing. The
subset of that literature that is relevant to on-line help systems is extremely small. On-line help
systems have been as neglected by human factors experimenters as they have been by programmers.
For example, Mudge [77] wrote a dissertation entitled “Human Factors in the Design of a Computer-
Aided Instruction System™ and, despitc being generally quite thorough. managed to avoid making

cven a single mention of on-line help.

Thus the amount that is actually known is not great, but at least a comprehensive survey is still
possible. I this chapter. I will discuss the major éxperimcms with results relevant to on-line help
systems. Since details about actual help systems were collected in the previous chapter, this chapter
will focus on more general work, reporting relevant experimental results, critical surveys, technical

notes, and more general psychological and text-related perspectives.

4.1. Surveys

Only a few papers have surveyed the state of the art in on-line help systems. Sondheimer and
Relles [113] present an excellent survey of the various methods by which help systems can be studied.
However, they then concern themselves largely with issues of implementation, and make some
unwarranted assumptions about what help systems ought to look like. Houghton [55] surveys various
techniques available in help systems and related aspects of user interfaces, but does not go into any
significant depth about any of them. Shneidcrman [108] surveys primarily the relevant experimental

results. Christensen [17] surveys actual existing help systems.

50 HE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS
4.2. Experimental Results

The few experiments that have been reported with regard to on-line help present a mixed bag of
results, gencrally discouraging. From the published literature, it would scem that on-line help holds
little promise for actually helping real users. Most of this phenomenon, however, can probably be
accounted for by the fact that the experiments were conducted using rather primitive help systems.
This may be inevitable, given the fact that psychologists don’t build complex software systems, while
programmers who do build them don’t generally run experiments testing them. The current thesis is

designed in large part to address this phenomenon.

Magers [73] describes an experiment in which a fairly unsophisticated help system is modified in
several simple and casy ways to yield a new system that is significantly morc useful for novice users.
This study demonstrates the importance of such non-technical “details” as text quality, command
namecs, and non-technical orientation. Unfortunately, the study suffers from a major confounding
factor: while it demonstrated that one of the two systems was better than another, it could not
pinpoint which of the differences were responsible, and the systems differed in many small ways. In
the absence of a complete theory behind the experimental design, the results are open to multiple

interpretations.

O'Malley ct al. [81] report that after extensive observations of the actual usage of the UNIX help
system, they determined that it was used in three distinguishable types of situations: for quick
reference, for task-specific help, and for full explanations of commands. The latter is what UNIX
already provides, and the former is easily provided, as indeed it was in a related study [5]. However,
the second type of help, which the authors call “task-specific help”, requires help that presents an
integrated perspective on scveral separate system functions, a kind of help not often found in working

help systems.

The later Bannon and O'Malley study [5] reports on the evaluation of a quick-reference help
facility designed to supplement the standard UNIX help facility. Their paper focuses on the
difficultics of cvaluating such systems, and discusses several possible approaches to such cvaluation.
Apparently without having actually run any controlled experiments on the system, they conclude that
contrelled experiments are nor uscful in evaluating the high-level design and utility of the system. In
their own words, “A more controlled study would be appropriate for the purposes of debugging the
specific display design, after we had determined the usefulness of this type of facility.” [S, page
68] This conclusion scems to be contradicted by the results of this thesis, which demonstrate that even

the most basic high-level decisions that are made in the design and informal testing of a user interface

RId EVANT PREVIOUS RESEARCH 51

can be completely wrong when rcached by simple subjective evaluations. (Bannon and O’Malley
would not be likely to deny that such decisions are often wrong, but mercly that controlled
experiments can help get them right. ‘This thesis is an argument that they can indeed help, but only
with the enormous amount of cffort that went into the experiments reported here.) Of course,
Bannon and O’Malley relied on int%:rmediatc methods -- not wholly subjective, but not rigorously
controlled experiments. In the context of this thesis, their methods -- primarily long-term monitoring
of real usage patterns -- would have required as much cffort as did the controlled studies, and the

results at best could not have been any more reliable.

Mantei and Haskell [74] analyze in detail the experience of a first-time microcomputer user and
find that 54% of that novice’s problems were related to the system documentation rather than to the
interface itself. The authors make some suggestions about the causces of this phenomenon in terms of
the conceptual orientation of the texts, but the study is cqually valid as an argument for much more
sophisticated help systems. Primarily, their study demonstrates that much of novice users’ problems

with computers may be related to inadequate help and documentation.

Draper [27] extensively analyzes experts’ command usage on UNIX, and concludes that the notion
of “expertise” on a complex system such as UNIX is highly mislcading. He finds that so-called
“experts” may know virtually non-overlapping subsets of the entire system, and act mmuch like novices
outside of their domains of expertise. He suggests, in fact, that the only real measure of expertise may
be a user’s facility with the help system -- that is, his ability to use the available help to learn what he
needs to know. This conclusion, if correct, might help explain the surprising results of the

experiments on experts using help systems reported in Section 7.4 of this thesis.

Mack, Lewis, and Carroll [72] report on studies of novices learning to use word processors. They
conclude that the help systems were totally incffective for their users because the help was oriented to
answering specific questions, whereas discerning the right question was often the crux of the subjects’
problems. This reinforces the importances of examples, tutorials, and concept-based help, which
were apparently not provided by the help system on the word processor in the study. (The authors

described the help system as “state-of-the-art” without claboration.)

Bott [10] reports extensively on how naive users learn a simple task on a computer. Perhaps the
most interesting and relevant conclusion he reaches is that analogics in help information can be
highly misleading, producing “blind spots” when the analogy is not quite exact. This concern is

cchoed in a later article by Halasz and Moran [48].

52 THF DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

Lang, Auld, and Lang [69] study the goals and methods of users trying to accomplish various
simple tasks, and conclude that documentation is most uscful when it is extremely short and to the
point. This suggests that on-line help access mechanisms can be of great value if they can quickly
direct the user to a short picce of text without making him look through a large body of irrelevant

information.

For the computer scientist contemplating experimental research, examples and guidelines for
experimental design are invaluable. Aside from general texts on experimental design
[13, 57, 123, 125), there are several texts that demonstrate successful experimental methodologies in
user studies of software other than help systems. Card, Moran, and Newell's book [14],
Shneiderman’s book [107], and Reisner’s survey [88] summarize the state of the art to a large degree.
Enlightening examples of well-constructed specific studies include the Roberts and Moran
experiments [8, 93, 94, 95, Robertson, et al. [96, 97, 98, 99], Drzida, et al.[32], Black and Moran [7],
and Loo [70].

4.3. Relevant Results from Psychology and Document Design
Research

Compared to the paucity of actual help system research, an enormous amount of work has been
done on the psychology of human-computer interaction and on the design of technical
documentation. Summarizing all of this work is beyond the scope of this thesis; indeed, it might
require a thesis-sized work in itself. Here, however, I will mention several highly relevant work
which either summarize results from those fields in a manner relevant to help system design, or
otherwise provide valuable insights for the design of help systems. This section should by no means

be considered to be exhaustive.

The problems of naive users learning to use on-line systems have been discussed in many articles.
Kennedy [62, 63] has advocated a number of specific remedies for these problems, including some
unspecific recommendations for on-line help (*A HELP key or command ... is essential to give
cdnﬁdence to a casual or naive user.” [62, p. 319]) Other worthwhile work discussing the needs and
motivations of individuals learning to use computer systems has been done by Anderson [2, 3], Bott
[10]. Moran [75, 76], Nicholson [78], Norcio [79], and Rosenberg [102].

The problem of document design has received an enormous amount of attention. Much of this
work is summarized in a set of document design guidelines by Felker, et al. [33], which draws on a

wide range of research in this area.

RELEVANT PREVIOUS RESEARCH 53

Several studies [45, 46, 47] have demonstrated that reading from a standard video display screen is
significantly slower than reading from paper, although the differcnces seem to go away with larger

screens and higher resolution.

As a global motivation of studies such as this one, the study by Sproull, ct al. [114] is a compelling
demonstration of how far computer scientists still have to go to make computer systems less
intimidating to new users. In this study, college freshmen responding to a carefully constructed
survey indicate that the fear, frustration, and sense of inadequacy generated by introductory

computer courses dwarfs any other terrors the university can offer to its undergraduates.

In addition, studics done at IBM [23, 24, 25] have dramatized the importance of response time for
productive user interfaces. These studies suggest that rapid response time is an ideal worthy of more
than lip service, for a small increase in response time can, at least for certain kinds of tasks, lead to a
much larger increase in total task execution time. These studies should serve as a red flag to all who

believe that it is reasonable to trade off speed for power.

4.4. Technical Research on Help Systems

Finally, a small amount of useful work has been done with regard to the actual implementation of
help systems. In a sense, it is surprising that any work at all in this area could be useful, since in the
absence of any real understanding of what a help system ought to look like it is premature to describe
how it should be implemented. Nonetheless, a few authors whose work has included good ideas on

the design of help systems have also contributed information on their implementation.

Fenchel [34] built the first help system to maintain all of its help in a single coherent database, thus
making it possible to consider providing several kinds of help in an integrated manner from such a
single database. Unfortunately, his work focused so much on the implementation that he never did
build more than a single access mechanism, but the implementation work was quite interesting, and is

a clear ancestor of the prototype system built for this thesis.

Sondheimer and Relles applied the same knowledge that produced their survey article [90] to
produce a specification for a unified approach to on-line help systems [113]. This latter paper is
clearly preliminary to a new implementation effort, and describes a comprehensive framework for the
implementation of such a system. The authors may actually assume too easily that the proper' design
of such a help system is understood -- at least, it is obvious that they think they understand it -- but

given the nature of the design they propose, their discussion of implementation techniques is very

54 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

useful. An carlicr paper by Relles and Price [89] goces into great detail about the architecture of a help
system they built, describing primarily how the programmer interface to a highly flexible system was

designed.

A few of the more experimental help systems reported in the literature actually are reported more
heavily for their implementation techniques than their interaction facilities. These include especially
the knowledge-based help systems such as Finin's [37, 109], Wilensky's [122], Howe's [56], and
Genesereth’s [40]. Thesc papers are of intercst primarily to the builder of knowledge-based help
systems; it should be noted that there is as yet no demonstration that the knowledge-based approach

is cither practical or useful, despite the promises of its practitioners.

Of course, there is also a fair amount of literature detailing implementation considerations for user
interfaces other than help systems. While some of this may well be of use to the help system

designer, it will not be surveyed here.

RELEVANT PREVIOUS RESFARCH

Part Two

The Method

55

56 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

THE ACRONYM HELP SYSTEM 57

Chapter 5
The ACRONYM Help System

This chapter describes the prototype help system implemented for evaluation in this thesis.
Sections 5.1 and 5.2 discuss the motivation of its design and the choice of UNIX as the
implementation domain. Section 5.3 presents a top-level view of how the system works. This is
followed, in Section 5.4, by a more technical discussion of the system’s implementation, which may
be safely skipped by the reader unconcerned with such details. The chapter concludes with a

discussion of the limitations of the prototype system in Section 5.5.

5.1. Motivation: Factors in the Design of ACRONYM

Rescarch on help systems can proceed in any number of directions, as the survey in Chapter 3
demonstrates. At the present time, promising fields for rescarch include the use of graphics in help
systems, natural language help systems, and “intelligent™ help systems or tutoring systems which

apply real knowledge about the task domain to the generation of help.

This thesis, however, is not designed to address any of the ongoing rescarch problems in those
areas. Rather, it is concerned with a more practical set of questions: how should techniques that are
already well-known and well-understood be used to create the best help system that is practical and
reasonably cost-effective at the present time? Obviously there are some grey arcas: current
workstation technology makes windowing and simple icons casy, but programming these
workstations for sophisticated graphics, though possible, is still extremely complex and time-

consuming, and hence not cost-effective for many applications.

The concern here is to utilize known techniques to the maximum and to study their effects. The
importance of this approach is amply demonstrated by the sorry state of help systems in the real
world today. It would appear that the few programmers who have scen fit to devote real effort to
building help systems have generally acted in ignorance of the good facets of help systems that have

gone before. The help system to be constructed for this thesis, therefore, was specified to be one that

58 THE DESIGN AND EVALUATION OF ON-LINIE HELP SYSTIEMS

any good programmer should be able to completely implement in a reasonable amount of time and

13 In this way, the system should serve as a model for future

that would run on ordinary hardware.
implementations, or at least as a ncw minimum standard to which all future help system designers

might be held accountable.

Given this limitation -- that the implementation of the help system should not itself address any
unsolved rescarch issues -- certain types of help features are immediately ruled out. However, the
vast bulk of the help spectrum discussed in Chapter 2 remains available as techniques for the
implementation of the prototype help system. In particular, all that are recally ruled out are help
systems which use fancy graphical techniques, beyond simple windowing, intelligent help systems
and tutors, and natural language systems (although the latter was simulated with cxtremely

interesting results).

Other factors motivated the cxclusion of a few other potentially useful Liclp features. Since the
system was to be studicd only in relatively short-term experiments, it seemed useless to build into it
facilities for long-term monitoring of individuals and for tailoring its behavior to individual user

models and profiles.

Perhaps more importantly, the contents of the database were dictated to a large extent by the
necessity for objective experimentation. Since the experimental methodology (to be described in
subsequent chapters) was designed before the help system was actually built, it was important to
ensure that I did not bias the help system’s database in favor of those tasks that I knew would be a
part of the experimental task set. Thercfore I obtained the contents of the database from the best and
most appropriate book 1 could find." Although the information in that book was already well-
structured for inclusion in a network-based help database, it did omit some kinds of texts that might
be uscful in a help system. In particular, it did not, for cach command, include spccizﬂ sections on

level of expertise required, category of command (file handling, word processing, etc.), analogies or

13'1110 definition of “ordinary” may be somewhat strained here: while sophisticated graphics are not presumed, the system

studied in the experiments featured a 60-line terminal with a mouse. However, a second version of the system ran on an
ordinary 24 line terminal without a mouse. Differences between the two versions, and observations reievant to future
implementors who are constrained to a smaller screen, are recounted in Chapter 8.3.

14'I‘cxls for the experimental help svstem were derived in large part from Mark Sobell's 4 Practical Guide 1o the UNIX
System, Copyright (¢) 1984 by Mark G. Sobcll. published by the Benjamin/Cummings Publishing Company. The cooperation
of the author and publisher is gratefully acknowledged.

THE ACRONYM HELP SYSTEM 59

mctaphorsls, or customization. 1t also did not provide multiple levels of deepening help for people
with differing cxpertise. Any of thesc might improve the system, and all of them are perfectly
feasible:; indeed, they are merely the data for the help mechanisms, and could be included with no

change to the mechanisms themselves.

5.2. The Choice of the Implementation Domain

As has been stated, the task domain chosen for the prototype help system and experiments was the
UNIX operating system. While UNIX's widespread use and notorious opacity for novices [80] might

make this choice seem the obvious onc to many, a few words about its sclection are in order.

The three key factors in choosing UNIX as the implementation domain were a large local user
community, an interface that was initially difficult to learn, and a software environment conducive to

the quick construction of the prototype system.

The requircment of a large user community, which was designed to facilitate experiments testing
the help system on expert users, effectively narrowed the choices available locally to four: UNIX,
TOPS-10, VMS, and TOPS-20. (Two other systems available locally that were rejected primarily
because of the size of their user community were the SPICE integrated programming workstation
environment and the UNIX-based Andrew system under devclopment at the Information

Technology Center at Carnegie-Mellon.)

Of these four systems, UNIX was the clear choice for both of the remaining two reasons. The
cryptic nature of the UNIX command interface is legendary, as its supportiveness for software
engineering tasks [65, 64]. In addition, UNIX was chosen because of the availability of UNIX Emacs
[44, 9], a powerful editor which is programmable in a lisp-like language. By building the entire
system within Emacs, it was possible to completely avoid having to write any screen management or

process management code, which undoubtedly saved many weeks of implementation time.

5
I It should be noted, however, that scveral authors have argued against using analogics or metaphors in computer

documentation. [10. 48]

60 THE DESIGN AND EVALUATION OF ON-LINE T P SYSTEMS

5.3. The Design of ACRONYM

ACRONYM® is the prototype help system designed for usc in this thesis. As stated carlicr in this
chapter, it was intended not to break new ground in help system design but rather to consolidate and
integrate existing techniques. As it happens, this consolidation and integration itself may be regarded
as ground-breaking: cxpericnced computer users testing ACRONYM have routinely remarked on its

power and clarity of design.

ACRONYM represents help in a single database which can be accessed via a number of
independent mechanisms. ‘The system was designed to make it easy to turn various component
mechanisms on and off to facilitate testing. However, the version described here is the full version

with all facilities enabled.

5.3.1. The User Interface

When ACRONYM runs, it divides the screen into three windows. (This is the primary motivation
for using a larger-than-usual 60-line screen. Those versions of ACRONYM which use standard 24
inch screens end up with 7-line windows, a bit small for most people’s taste.) The bottom window is
the command window, where the user types commands and the computer prints its responses. The
top window is the help text window, where the system displays the help texts that have been accessed
by one of the help mechanisms. The center window is a help menu window, listing relevant topics on
which further help is available. Figure 5-1 shows the ACRONYM screen when it first starts running.
Appendix B shows a series of such screen pictures as it illustrates how ACRONYM looks in actual

use.

All of the windows are independently scrollable, using mechanisms to be described below.
However, the database has been structured so that in most situations, scrolling is not necessary; the
size of the help text and the number of menu options is usually small enough to fit in the 19-line

windows provided.

Help is available via four basic mechanisms. The first mechanism is passive help. This is the only
computer-initiated help ACRONYM provides. Whenever the user types the SPACE key (the most
common separator between components of a UNIX command) or the RETURN key (the terminator

of UNIX commands), the system parses the partial command line and updates the help text and

]63\CRON YM is not an acronym.'

THE ACRONYM HELP SYSTEM 6l

Figure 5-1; What ACRONY

*s Screen Looked Like

Welcome to ACRONYM. It you don't want to be here, press DEL to exit

In addition to normal typewriter-styte keys. your computer has a pointing
device known as a "mouse.” You can meve this device around. causing the arrow
on your screen to move arcound and point at different parts of the screen.

In this system. you can use the mouse to get help in scveral ways.

lo begin with, you will notice that the highlighted line underneath the text
you are now reading says "PRESS HERE to move forward.” 1f you use the

mousc to point the arrcw at the word "HERE™. and then press any hutton on
the mouse. you will find that the text in this window is scrolled forward --
that s, the beginning of the text will disappear. and rew text will appear
at trhe cnd of the window. lry it and see

{f you can't seem tu get the window to scroll forward. this probably means
that you are pointing the arrow a little too high Note that it is the
arrow head. not its body. that should be pointing at the word "HERE™.

Tu

general. whenever this window or the one below it has more text than is

-~ Help texts -- PRESS HERE to move forward

** How to use the ACRONYM help system

** at: EFxecute a Shell script at a specified time

** pb: print notices from bulletin board(s)

*+ pitf: be notified if mail arrives and who it is from

** cal: dispiay calendar

*+ calendar: reminder calendar

** cat: display a text file

** cc: € compiler

** ccat: Print compressed files in uncompressed farmat

** ¢d ar chdir: Change to another working directory

** chmed: Change the access mode of a file

*+ chat: Communicate with (log in to) another machine on the tthernet
** ¢k: check if new mail) has arrived

*+ cup: Compare two files to see if they differ

*> cmutip: fransfer files to and from other machines on the EBthernet
** ocol: filter reverse line feeds

2 comm: Compare twe files and pirint matching and non-matching Tines
** cempact: compress files to save space

** cp: Copy ftile

*« :z: convert files to press format and print them on the Dover

~- Help menus -- PRESS HERE to move forward.

Press ¢ for context-dependent help, DEL to erit. Press HERE for basic help.

62 THE DESIGN AND EVAL UATION OF ON-LINE HELP SYSTEMS

menu windows accordingly. ‘Thus, if a user types “rm” and then presses SPACE, the help text
window is updated with a short text describing the options and arguments for the rm command."’
The menu window is updated to list such related help topics as “Examples of the rm command”,
“Options for the rm command”, “What is a file?”, and “rmdir: Delete a directory™. Note that some
of these menu items provide further details about the command in question, while some describe
concepts of global importance (files, directorics, path names, and so on), and still others point to the

documentation on other, related commands.

The sccond method by which help can be obtained is also context-dependent; it is in fact just like
the first except that it is human-initiated instead of computer-initiated. By typing a question mark
(“7°) at any time, the user can cause the system to parse the current command linc and update the
help in much the same manner as it docs automatically when SPACE is typed. However, this
mechanism is available even if the automatic updating is turned off, and can be used in the middle of
a word to beneficial effect. For example, in UNIX a hyphen (*-”") usually signals an option on a
command line. Therefore, if an ACRONYM user types, for example, “rm -~ and then types a
question mark, ACRONYM will update its help window to contain a detailed description of the
options for the rm command. This technique is also used for file name completion. For example, if
the user types “rm mx” and then types a question mark, the menu window wili be updated to

include, as new menu choices, the list of all file names in the current directory starting with “mx”.

The third method by which help may be obtained is key word requests. At any point, the user may
type the word “help™ followed by a key word. ACRONYM will then look up the key word and
update the help and menu windows accordingly. For example, if the user types “help rm”, the help
text will be updated to the initial help for the rm command, with appropriate menu items. If the user
types “help file”, the text will discuss what a file is while the menu will list commands and concepts
related to the notion of a “file”. In the case of ambiguous requests, such as “help fil” which might
reasonably refer to “file”, “filter”, or “profile”. ACRONYM will dynamically generate a help menu

that allows the user to choose between those ambiguous interpretations.

Finally, the fourth method by which help may be obtained is menu selection. As described above,
the menu window at all times contains a list of topics for further help. In the mouse-based version of
ACRONYM, users can simply point to one of these at any time and click any mouse key, and the
help will be updated to explain the topic selected. (In the non-mouse, small screen version of

ACRONYM, menu selection is done with function keys.)

”'lhc rmm command on UNIX is used to delete a file or files.

THE ACRONYM HELP SYSTIM 63

When help is updated by a mechanism that is not context-sensitive -- that is, by key word or menu
help -- the new menu will include as its first item the option of returning to the previous help frame.
This makes it relatively casy for users to recover after an incffective help request. An arbitrary
number of menu or key word help requests can all be backtracked, but the stack is reset every time
context-sensitive help is obtained. (This seemed to make sense when it was designed, but observation
of users suggests that resctting the stack causes unnecessary confusion. However, the backtracking
feature was never used to backtrack long distances, so a better yet still efficient implementation might

simply allow backtracking of the last 20 help frames, whatever they were.)

A few other features of the system are worth mentioning. Independently scrolled windows are
implemented as follows: when the help text or help menu window contain more text than can be
displayed, one or both of the phrases “Press HERE to scroll backward” and “Press HERE to scroll
forward” appear on the line that divides the window from the one below it. Users can scroll the
windows by simply pointing at the appropriate spot with the mouse. Scrolling is implemented with
function keys on the non-mouse version (e.g. “Press f13 to scroll backward”). Help with the
mechanics of the help system itself is also always available with a mouse selection; a spot at the
bottom of the screen says “Press HERE for help with the ACRONYM Help System”. This, too, is
done with a function key in the mouscless version. An error message is printed if the user trics to

sclect an inappropriate part of the screen with the mouse,

The use of ACRONYM is further illustrated by example in Appendix B. Reading that example
will probably give the rcader who has never used ACRONYM a clearer picture of how the system
works. A brief videotape of ACRONYM in action is also available.

5.3.2. The ACRONYM Database

The most important thing about the ACRONYM database is that it is a database -- a database of
knowledge about help systems, rather than a set of texts for use in specific circumstances. It was not
designed to support a single help mechanism, but instead to structure the help data in such a way as
to facilitate retrieval via several different mechanisms. This kind of database allows the maintainers

to add new help mechanisms without having to write new texts.

ACRONYM’s database is structured as a network in which the basic object is an indivisible chunk
of help text. These texts are linked to each other by pointers, which arc used both for the
construction of menus and for the parsing of command lines. Pointers may be syntactic, in which

case they are used for parsing, semantic, in which case they are used for menu construction, or both.

64 THE DESIGN AND EVALUATION OF ON-TINE HELP SYSTEMS

Purely semantic pointers can be specified forward or in reverse, to simplify fleshing out the database;
duplicate pointers arc automatically climinated. Each text has a short name, used in the database
implementation to specify pointers, and a long name, which is the one line of text displayed in

menus.

As stated before, the ACRONYM database comes primarily from Sobell’s excellent text on the
UNIX system [112]. It was necessary to supplement these texts with additional texts to describe those
commands which are not part of standard UNIX but are in common use at Carnegic-Mellon. (It was
considered essential that the depth and breadth of the ACRONYM database should be
approximately the same as the standard help system to which it was being comnpared.) These texts
were written in a format and level that resembled Sobell’s texts as much as possible. It was also
necessary to supplement the Sobell texts with additional texts that explained concepts, such as “file”
and “directory”, which were not available in the right format in the Sobell book. Finally, of course, it
was necessary to link these texts together with pointers; no such linking was provided by the Sobell

book. (Such links would not make much sense in the context of a textbook.)

5.4. The Implementation of ACRONYM

This section describes some of the details of ACRONYM’s implementation. Tt can be skipped

without loss of continuity by the uninterested reader.

ACRONYM was implemented on a Digital Equipment Corporation VAX-11/750 running UNIX
and Fmacs. The terminal used was a Xerox Alto personal computer running a terminal emulation
package (rchat) which simulated a 60 line intelligent terminal with a mouse.'® Most of the code was
written in Mock Lisp, the Emacs extension language, but the most computation-intcnsive portions
were written as a C process communicating with Emacs via the CMU IPC [86]. This allowed the C
program to parse the command line asynchronously, so that there were no user-level delays for
parsing. (This also meant that occasionally the help update performed when the user pressed SPACE
was not completed until the user had typed several more characters.) The system ran with no
detectable response delays on the VAX when unloaded, and with a few seconds delay for context-
sensitive help when the VAX was heavily loaded. However, for the experiments the system ran at

high priority, and hence with very fast response.

18'”1(3 terminal emulation package did not permit graphics or sophisticated control of the mouse. The mouse identified its
own location only by its character row/column position. rather than the much finer resolution of which the hardware was
capable.

THE ACRONYM HELP SYSTEM 65

The details of the implementation of ACRONYM and its data structure were dictated in large part
by the decision to build the system within Emacs. Emacs offcrs several advantages in such a system,
most importantly the built-in provision of sophisticated screen management, string handling, and
process management facilities. However, its facilitics for file access are rudimentary: either it reads
in an entire file or nothing at all. Thus, the implementation cither had to store the ACRONYM
database in one or a few large files which would be read by Emacs in their entirety and then taken
apart as needed, or it had to store the databasc in a very large number of small files, cach containing
the help text for a single node in the help network. This latter approach was used, as it held out the
clear promise of faster performance in the Emacs environment.” A system operating independent of
Emacs could casily achicve the same performance without such a proliferation of files simply by

using pointers into files and random disk access.

Thus, ACRONYM stores almost everything as a scparate file. What the documentation designer
creates for a help node is two files: the first file is the help text, displayed by ACRONYM in its help
text window, and stored in a file named by the node’s unique name followed by the suffix “.help”.
The second file, suffixed *“.hcom” is a program spccifying the way the help node is linked to other
nodes, written in a compiled language that could easily be improved on in future systems. The first
line of such a program is the “tag line” used to identify the node in help menus. The remaining lines
are cach pairs of words specifying relations between nodes. The first word gives the link mechanism,

while the second word is the name of the node being linked to.

The link mechanism is simply “@Ilink™ to specify a semantic (menu-only) link from the current
node to the node named as the second word. The link mechanism “@key” is the opposite: it
specifies a menu link from the named node to the current node. (The word “key™ is intended to
suggest the specification of a key word. For example, the .hcom file for “rm” includes “@key file” to
indicate that “file” is a key word for rm, so that people looking at the help for “file” should see a
menu item leading them to the “rm” command.) Other link mechanisms available are for syntactic
links -- links that are used in the parsing of command lines for context-sensitive help. These
mechanisms specify state transitions: if the parse is in a state corresponding to the current node, the
syntactic links specify how the parse can advance to another node. The simplest such mechanism is a
simple string, indicating that the transition can be made if the user types the string verbatim. Thus,

for the top level (root) help node, the .hcom file includes the line “rm rm”, indicating that if the user

wEmacs can't casily do random access to a file, and can hence extract picces of a file only relatively slowly. Using
independent files allowed each window's contents to be pre-written into a single file, so that a simple read-file operation was
all that was ever needed. llence the database had thousands of files.

06 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

types “rm” the parse can proceed Lo the help node “rin™. Other syntactic link mechanisms include
“@tfile”, which is matched (and hence the parse proceeds) if the user types any cxisting file name,
“@filewrite”, which matches any potential (writable or existing) file name, “@dircctory™, which
matches any directory name, and “@user”, which matches any user name. An early version of
ACRONYM included a generalized regular expression parser for syntactic links, but this proved
almost completely uscless and was disabled in order to increase performance. It was replaced with
“@opt”, which matches anything starting with a hyphen (**-” starts most UNIX options), and
“@any”, which matches any single word, and is used as an escapc mechanism in thosc few cases
where the full regular expression parsing would have been genuinely useful. (Such a mechanism
would probably be more uscful for parsing help requests in a less rigid command language, but most
UNIX commands are easily and quickly described using the simpler mechanisms.) All syntactic links
are assumed to also be semantic links unless the name of the node being linked to is preceded with an

“@ sign. In such a case, the link is purely syntactic, and no listing will appcar in the rclevant menu.

A documentation designer modifying the ACRONYM database therefore has to modify only the
* help” files and the “.hcom” files. Modifying the .help files is simply a matter of editing text, which
is of course what documentation.designers arc paid for. Modifying the .hcom. files is clumsier; in a
system designed for real-world use, it would probably be worthwhile to invest some effort in the
creation of better support tools to replace the cumbersome language used in ACRONYM. In
particular, a useful (ool would utilize a graphical display to create a map of the database, allowing the
database designer to create links by drawing arrows and to specify their syntactic and semantic

content by annotating the arrows.

When it runs, however, ACRONYM does not read the entire database in the format thus
described; this takes too long. Rather, it reads in a compiled description of the database. Hence, a
compiler must be run each time the database is changed. This compiler reads in all of the .hcom files,
constructs an intermediate data representation, and stores this in a file that is actually read by
ACRONYM. The compiler also, after reading in all of the .hcom files, creates for each node a
“hmen” file. This is the menu file that is inserted in the ACRONYM window. (ACRONYM does,
however, add menu items to these files on certain occasions -- the .hmen files are simply the basic
menus for cach node.) Thus ACRONYM when running finds both its help texts and its menus in
prewritten files, and needs only to use the compiled database to figure out which files to use. This is
the primary reason wh§ ACRONYM actually runs faster than the UNIX man command, which is a
much less sophisticated help system but has to run everything through the nroff text processor before

printing it on the screen. (This is obviously a rather worthless comparison; almost anything is faster

THE ACRONYM HELP SYSTEM 67

than the man command. However, ACRONYM did actually run quite fast; a response time longer

than a sccond was extremely rare.)

The hmen files can only be safely created after alf of the .hcom files have been read in, in order to
properly take account of reverse-specified links (links specified using @key). Compilation would be
quicker and easier if no mechanism such as @key existed, so that each menu could be generated
directly from the associated .hcom file (indeed, this would make it easy to implement scparate
compilation of cach node, as opposed to ACRONYM's current all-or-nothing compilation.)
However, this would make the documentation designer’s problem harder -- he would have to cdit
more files more often. Since the implementor of ACRONYM was also the documentation designer,
compilation spced was willingly sacrificed. Of course, with a good (graphical) interface for the

documentation designer, this probiem would be moot.

When ACRONYM runs, therefore, it has to read only the compiled representation of the database
structure; this ‘i‘nformation includes the names of the nodes, the extended names of the nodes (single
line descriptions for menus), and the pointer relationships. The format in which this information is
stored is not especially efficient. No real users ever had to wait for ACRONYM to start up, as the
system was alrcady running when subjects showed up for experiments, so there was no great effort to
make this part of the system work fast. With its full database (about half a mcgabyte of text and
pointers) ACRONYM generally requires about a minute of real time to start up. Since the actual
help texts are not stored in the compiled database, ACRONYM doesn’t read in any such texts until

they are genuinely needed.

ACRONYM was invoked from the UNIX shell by an alias that started up Emacs and executed a
Mock Lisp “acronym™ package. This program divided the screen into the appropriate windows,
started a shell process in the command window, and started a hidden process (using the Emacs
start-process mechanism) to run a C program also (confusingly) called acronym. This was the process
that actually read in the ACRONYM database. When the database had becn read in, the C program
sent a message up to Emacs telling it to read in the root help and menu files, and the Emacs program

then printed an appropriate startup message.

Menu selection was accomplished with no communication at all with the underlying C program.
The menu files included (in the first 14 characters, and hidden from the user by Emacs trickery) the
names of the files associated with each menu item. Thus the emacs code could look at the menu line
that was sclected and determine the name of the associated node in the help database. It would then

read in the relevant “.help” and “.hmen™ files.

08 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Context-dependent help was executed by having a Mock Lisp program copy the current command
line and send it to the C program. The C program would parse the linc using its database of
information, and send back to Emacs (via the IPC) the name of the new help node. Emacs would

then update the help text and menu windows from the associated .help and .hmen files.

Key word help was accomplished similarly to context-dependent help; the C program would
disambiguate the key word if possible, using the thesaurus-like information in ACRONYM’s
database, and send Emacs the name of the appropriate help node. All key words were implemented
simply as individual nodes in the ACRONYM databasc; the system simulated a thesaurus inasmuch
as a large number of synonyms for each concept were explicitly defined. A genuine thesaurus would

be both more complete and less painful for the documentation designer.

In some cascs of context-sensitive help, especially those involving file name completion, user name
completion, or something similar, the C program had to write out a new version of the .hmen file “on
the fly”, to incorporate information about the current state of the world (available files, etc.). This
was the only rcason that the compiled database included the text lines (long names) for each help
node.

When key word help or menu-selected help was provided, the mock lisp program that updated the
display also inserted an appropriate menu selection item to allow the user to go back to the previous
help node. The stack of such items was implemented as an Emacs buffer, so that the C program was

never involved in this procedure.

In summary, the implementation of ACRONYM was quick and dirty. However, it is worth noting
that these tricks sufficed to allow all of the mechanisms of ACRONYM to be built in about three
weeks, from scratch. [t was only the availability of the sdphisticated support mechanisms of UNIX
Emacs that made this possible, and hence that made it possible to include both the construction of

the system and its experimncntal evaluation in a single thesis.

Obviously a rcal-world system, not embedded in Emacs, concerned with startup efficiency and with
the interface to the documentation designer, and with some customization options to allow at lcast
minimal user tailoring of the help system’s behavior, would take considerably longer to build.
However, it still scems rcasonable to expect that such a system could be built by experienced

programmers in not much more than one man-ycar.20 Compared to the total cost of building a major

zo'lhls is the cost of building the mechanism, not of fleshing out the database. However, fleshing out the database is likely
to take only slightly longer than writing conventional documentation for the same system.

FHE ACRONYM HELP SYSTEM 69

software system, this scems quite reasonable, especially in the light of the frustration with which users

have traditionally vicwed their help systems.

Finally, for the masochistic reader, some annotated cxamples of the ACRONYM database are

provided in Appendix C, which explain how the examples in Appendix B actually work.

5.5. Limitations of the ACRONYM Help System

Aside from the corners that were cut in its implementation, ACRONYM differs in a number of

ways from the optimal system that could be built with the same basic approach.

Some of these are dictated by hardware and by the terminal cmulation software used:
ACRONYM would be obviously improved with support for highlighting and multiple fonts, careful
use of graphics and animation, a better mouse mechanism (the rchat program’s support for the mouse
can only charitably be described as merely clumsy), and a higher quality display (the particular Xerox
Alto used in the experiments probably had an excellent display about ten years before it was used in

these experiments, but has not aged well).

Other ways in which ACRONYM fails to meet its potential arc dictated by the mecthodological
decision to usc only externally-generated texts as much as possible: ACRONYM would be improved
if it included tutorials structured for inclusion in its menu network, multiple levels of explanation,

special information for experts, customization information, and references to external sources of help.

Finally, some of ACRONYM's other failings can only be attributed to implementation
inadequacies, many of which only became obvious after the system had been in use for some time in
the experiments: A future system like ACRONYM might include a provision for cycling through
menu choices when successive requests for context-dependent help are made. (ACRONYM simply
gave users the same thing, over and over again.) It might be very useful to treat any erroneous
command as a key word help request, so that if a user types “dircctory” instead of “Is72 (a very
common thing for a naive user to do), ACRONYM would supply help about “dircctory” that might
quickly lead the user to “Is”. File name completion could be more thoroughly integrated into the
menu selection process, so that one could avoid typing a complete file name by sclecting a menu
item. The top-level menu, currently much too large, could be replaced with a series of submenus

categorizing commands by major topics, as recommended by several authors [49, 81]. A real-world

2115 is the UNIX command for listing the files in some directory.

70 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTUMS

ACRONYM should probably include extensive opportunities for customization, and some provisions
for choosing among alternative help presentations on the basis of the user’s history of use of the
system. All of the above are practical, fairly simple improvements that could be made to

ACRONYM itself, with no undue programming effort.

Finally, an interesting rescarch project might be to tie a natural language help system into the
ACRONYM database. Although the experiments reported in Scction 7.1 cast doubt on the general
utility of nawural language help systems, they may yet prove very uscful to total novices who find even

the mechanics of a help system such as ACRONYM difficult and intimidating.

THE EXPERIMENTAL METHOD 71

Chapter 6
The Experimental Method

Evaluating the user interface of a computer system is difficult. It has been done rarely enough that
no general theory exists, and only a few good examples such as Roberts’ editor cvaluation
methodology [93, 94, 95, 8] arc available o use as models. In addition, the widc variety of user
interfaces that can be cvaluated carries with it widely varying circumstances and problems for the
cvaluator, so that experimental methods do not transfer simply from one domain to another. In this
chapter, I will describe not only the method used for the experiments in this thesis, but also the
factors which shaped the design of the experiments, in the hope that an example of how such
experiments arc designed may prove uscful to future designers of human factors experiments on

software.

6.1. Factors Affecting the Experimental Design

A number of special problems influenced the design of the evaluation experiments. The most
important of these factors were the need for a uniform implementation domain, the sclection of
experimental tasks, the stimulation of expert usage, variation among subjects, and the selection of

interfaces to be tested.

6.1.1. Uniformity of Implementation Domain

Section 5.2 explained some of the reasons why UNIX was chosen as the implementation domain
for the prototype help system. It did not mention, however, why it was considered necessary that all
help systems to be tested operate in the same domain. This was neccssary in order to prevent
variability in the inherent difficulty of the task domain from confounding effects of the usefulness of
the help system. If interface A with help system B is faster than interface C with help system D, it is
simply not clear if the effect is due to a better help system or a better fundamental interface design. It
is fundamental to design scientific experiments to minimize all variations except the one(s) being

studied, so it is clearly preferable to study help systems against the backdrop of a single task domain.

72 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS
6.1.2. Task Selection and Stimulation of Expert Usage

Help systems are, fundamentally, only used when subjects don’t know how to exccute the task they
are trying to perform. This poses an interesting problem for experiments on experts: how can
experts reliably be made to use a help system? Obviously, the selection of tasks for experts must be
very carefully made in order to ensure that the tasks are sufficiently challenging or obscure that most

of them will force most experts to scek some source of information other than their own memories.

For cxperiments on novices, of course, the problem is rather different; virtually any task will force
a novice to seck help, but many tasks will prove hopeless even with the most sophisticated help. For
that reason, tasks given to novices in the hope of observing their performance with a help system
must be sufficiently simple to give them a reasonable chance of success even with the worst help

system to be studied.

The successful selection of such tasks seems to require an iterative process. For these experiments,
the selection began with a questionnaire that was given to about a dozen UNIX experts, asking two
simple questions: First, what are the most basic commands that every novice learning UNIX needs
to know? Seccond, what tasks can you imagine that you might have to perform on UNIX that would

make you consult the help system?

From the answers to these questions, a first set of tasks for novices and a first set of tasks for experts
were derived. These were each about thirty tasks, representing the thirty most common answers to
each of the two questions. A pilot experiment was run, studying only two help conditions (the

standard UNIX help system and a human tutor) using these tasks.

In the pilot experiments, a few of the tasks were obviously unsuccessful, either because they were
too difficult for nearly all of the subjects or, for some of the expert tasks, becausc they were too
simple and forced virtually no one to ask for help. The task lists were each pared down to 22 tasks for

the final experiments.

By this process, an expert task list was obtained that was sufficiently challenging that the experts
needed some kind of help to complete 87.5% of the tasks in the final experiments. A novice task list
was obtained that contained tasks of sufficient simplicity that 95.2% of the novice tasks were

completed successfuly within the time allotted.

However, this process is not without its flaws. Although the expert tasks seem fairly representative

THE EXPERIMENTAL MIFTHOD 73

of how experts actually usc the help system, they do consist in substantial part of tasks that no one
would very often want to do; most of the interesting tasks arc alrcady known by too many experts.
This scems a fairly insurmountable problem: the only way you can get experts to use a help system

reliably is to ask them to do something they wouldn't ordinarily have much interest in doing.

Another flaw with the process by which the tasks were selected is that it could not take into account
very recent research on UNIX command usage [27,49]. The Draper study suggested that expertise in
a domain such as UNIX is chimerical in nature: Draper would undoubtedly have predicted correctly
that the only major difference between the experts and novices would be that the cxperts arc alrcady
proficient with the standard help system and hence perform better with it. The influence of Dra;;ﬁer’s
study might have been to focus the research more exclusively on novices at an earlier stage. In the
study by Hanson, et al., real communities of users were observed and a list of the most important
UNIX commands was obtained. Had these results been available when the task lists were selected,
they would probably have influenced the selection of tasks for novices, as their data is surcly more
reliable than the survey of experts described above. However, as it turns out, given the restrictions
imposed on the tasks for the current experiments (the tasks were individual commands, not involving
editors or programming languages). the Hanson study only suggested three additional commands that

possibly should have been included in the tasks for these experiments.

A complete summary of the cxpert and novice task sets is included in Table 6-1, along with the
command(s) that were acceptable as solutions for cach task. The exact texts of the task descriptions

presented to the subjects appears as part of the experimental materials in Appendix A.

6.1.3. Subject Variation

A major focus of concern throughout these studies was variation in the previous experience and
general computer aptitude of the subjects. Variation among subjects is a well-known problem in
human factors experimentation, and has in fact proved very costly in many studies. In Roberts’
pioneering studies of cditors [93, 94, 95], this variation was sufficiently wide that the bulk of the
editors were not significantly distinguishable for most of the tests. (This, remember, was in a
successful experiment on human factors in software!) In the hope of obtaining more significant

results, great attention was paid to the problem of subject variation, with modest success.

For the pilot experiments, five categories of expertise were defined and considered. Based on a
preliminary questionnaire, included in the experimental materials in Appendix A, subjects were

classified in onc of the following categories:

74

THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Table 6-1: Summary of Tasks in the Experiments

Order Intermediate task (solution) Expert Task (solution)
T] Time of day (date, uptime, whenis) Print on dover specifying font (cz-f)
'l'7 Change password (passwd) Sort in reverse order (sort -r)
l3 List files (Is) List files by time modified (Is -1)
T 4 View file (cat, pr. more) Change protection as specified (chmod o-r, chmod 640)
TS Copy file (cp) Delete file reversibly (del)
16 Rename file (my) 1 ist deleted files (Isd)
T7 Print file on dover (cz) Restore deleted file (undel)
'1‘8 Delete file reversibly (del) Find i-number (Is -i)
T 9 List deleted files (1sd) Set setuid bit (chmod u+ s, chmod 4xxx)
T] 0 Restore deleted file (undel) Send to user logged in twice (send -all, send user ttyxx)
T1 1 Direct message 1o another user (send, wrire) List processes for ali users (ps @)
'l"12 Print calendar (cal) Print file on dover with header (ez-h "..")
T13 View file backwards (rev) Sort. ignoring capitalization (sorr -f)
'l‘l 4 Print working directory (pwd) Cancel all pending mail requests (mailq -retain)
T1 5 Make new directory (mkdir) View only the printable strings in a binary file (strings)
T1 6 Change directory (cd, chdir) Execute remote commaund (cmufip r g - = "fdate™)
T17 Move file (my) Undclete old version of file (undel -g)
T18 Delete empty directory (rmdir, rm -r) Retrieve file from Onyx server
(ecp -u guest guest “fonyxJ< AltoDocs>chat.tty” chat.tty)
T 19 Delete full directory (rm -r) Send to user on remote machine
(rsend user@host, send user@host)
'1‘20 List current users (, users, finger, who, w) List processes on terminal tiypa (ps tpa)
'1‘21 IFind string in file (grep) List process with no terminal (ps 1p?)
Tz2 Send mail (mail) List total space occupied by deleted files (Isd -1)
1. Total novices -- pecople who had never before used a computer.

. UNIX novices -- people who had a certain minimum of computer experience, but had

never used UNIX. For these experiments, to guarantee similarity of backgrounds in this
category, alt of the subjects used could perform all or most of the questionnaire tasks on
the TOPS-20 operating systems, but none or nearly none of them on UNIX.

. UNIX experts -- people who could perform all or nearly all of the questionnaire tasks on

UNIX.

. UNIX wizards -- people who were not only UNIX experts, but who also were so

knowledgeable about UNIX in general that they knew virtually cverything about the
system. Obviously such knowledge could not be detected by the questionnaire, but
became obvious during the experiments. UNIX wizards generally did not have much use
for the help systems during the experiments, and were hence their data were disqualified
after they were finished. Several such disqualifications were necessary in the pilot study,
but none were necessary in the final experiments reported here.

. Mixed expertise -- people who did not fit in any of the above categories. Generally, these

were people who could perform some but not all of the tasks on the questionnaire, or who
had never used either UNIX or TOPS-20.

THE EXPERIMENTAL METHOD 75

In the pilot study, subjects from the first three categories were studied. However, the first catcgory,
total novices, proved intractable for the purposes of the experiments. Many subjects in this category
were totally unable to perform even the simplest of tasks; one of them actually spent half an hour
trying to understand the simple software for the typing test that preceded the real experimental tasks.
More important, nearly all of the subjccts had severe difficulty in using the bascline help system, the
standard UNIX help system. Since the subjects simply could not get anything done with the standard

help system, the entire methodology could not have worked well for them.

In the final cxperiments, which studied UNIX novices and UNIX experts, the results were
discouraging in terms of these expertise classifications. In particular, the experts behaved in varied
and unexpected ways, often belying their classification as “experts”. These results are discussed in

Section 7.4.

The problem of assessing subject expertise before the experiment is a difficult onc, and onc that
simply was not solved by the “classification-by-questionnaire™ method used in these experiments.
The questionnaire was useful in that it did guarantee that the subjects had similar backgrounds, but it

did not succeed in clearly differentiating between groups of users with similar performance abilities.

However, another aspect of the methodology proved very uscful in reducing the effect of subject
variation, given that such variation could not be avoided. Each subject in the experiments used two
help systems, the standard CMU UNIX help system and onc of the other help systems studied. (The
exact experimental method is described in Section 6.3.) The performance of the individual on the
standard system, compared to the large pool of data accumulated on that system, provided a rough
measure of the user’s basic competence against which to judge his performance on the non-standard
system. (The actual technique used for most of the analysis was regression, as described in Section
7.1.) The net effect was that the primary measure of interest was not a subject’s raw performance
time with a given help system, but rather the difference between his performance on that help system

and his performance on the standard “baseline™ help system.

One negative conscquence of the decision to use UNIX novices with TOPS-20 expertise is the
possibility that these subjects were, to some extent, biased in favor of the context-sensitive component
of the ACRONYM help system. However, ACRONYM is to TOPS-20's help what the modern jet is
to the first airplancs, and early aviation pioneers would not like modern jets merely because of their
prior prejudice in favor of being airborne. Nonetheless, the charge is serious cnough to be guarded
against in future studies of this kind. Fortunately, in this regard, the experimental results certainly

give no indication that the deck was in any way stacked in ACRONYM’s favor.

16 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS
6.1.4. Selection of Help Interfaces

Another major problem in the experimental design was simply to choose the help systems that
would be evaluated. This was difficult primarily because there were so many alternatives, and it was
unclear which comparisons would yicld the most significant diffcrences. In the end. a two-stage

approach was uscd.

First, the most basic unanswered questions were selected: Which is more important, help
mechanisms or text quality? Can on-line help be implemented with no paper manual without
adversely affecting its uscfulness? How does the performance of on-line help systems compare to
human tutoring? Appropriate help interfaces (as described in Section 6.3.4) were selected to try to
answer these questions in particular. The results of these studies were analyzed before deciding what
other help conditions to study in the last half of the experiment. This turned out to be an extremely
useful approach because the results were so unexpected. Since it turned out (see Section 7.1) that text
quality was so much more important than interface mechanisms, it became obvious that it was
pointless to use the methodology to investigate small variations in help mechanisms. Had the
complete selection of help interfaces to be studied been made without these preliminary results, it is
likely that the experiments would have been twice as time-consuming without producing any more

significant results.

6.2. General Evaluation Criteria for Help Systems

There are a number of measurable quantities that correspond to common intuitions about what
constitutes a "good" help system. It is helpful to consider these general notions first, and then to try

to translate them into the design of specific experiments.

One key question about any help system is simply, "How often does it tell you what you nced to
know?" That is, what fraction of the time will the system ultimately give a user the information he

seeks? This will be referred to as the Ait ratio.

Of special interest is the amount of time it takes to learn a given task using a particular help system.
This time will be referred to as the acquisition time for task t, as measurements for different help

systems are fairly comparable only when the task is the same for each.

Finally, there is also the question of user satisfaction. That is, it is not known whether or not the

system that is most efficient is always most preferred by informed users. In fact, informal reports

THE EXPERIMENTAL MEETHOD 77

from the working world often scem to indicate that this is not the case, that workers often prefer
interfaces that require slightly more time and work but are somehow more plcasant to use. Objective
mcasurements of these preferences are possible through monitoring of the actual usc of help systems
when scveral alternatives are available, though it must be ensured that the users are fully aware of all
the available alternatives. These measurements, however, would require long-term monitoring of a

rcal-world system and its users, and arc thercfore beyond the scope of this thesis.

6.3. The Experimental Design

The considcerations described above helped to shape the final experimental design, which will now

at last be described.

Two parallel experiments were conducted for the two different expertise categories being studied,
UNIX experts and UNIX novices with TOPS-20 experience. The two experiments were nearly
identical in structure, differing only in the expertise of the subjects and, accordingly, the specific tasks
to be presented to them. They are best conceived as two separate experiments, rather than as a single
experiment in which expertise level is the second independent variable, because the differences in
tasks for the different groups preclude direct comparison of performance times. However, a section
of the task domain does overlap. so that between-experiment comparisons can be made for that
portion of the data. (The overlapping portion consists of learning to use a set of simple UNIX
utilities written by the experimenter and not commonly used by UNIX experts. This data is

discussed in Section 7.4.)

6.3.1. Overall Design

Two experiménts v«./ere conducted, each following the same general pattern. In each experiment, a
group of subjects with similar backgrounds and experience in using computers were given a set of
tasks to perform on UNIX. The tasks were selected so that each group of subjects were executing
tasks they had never done before, and thus needed some source of information about how to
accomplish the tasks. The independent variable in each experiment was the method by which this
information was obtained. Each subject used the standard CMU UNIX help system during half the

experiment, and used one of the other help methods during the other half>2 These were balanced so

2',“I‘he use of a baseline condition was designed to reduce the effects of subject variation. as described earlier in this chapter.
The standard (man/key) help system was the obvious choice for the bascline: It 1s the only commonly available on-line help
system for the task domain. and thus provides a practical basc for measunng any improvements. In a practical sense. what is
really interesting to know about UNIX's help is. “How can man and key be improved on?”

78 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTTEMS

that an equal number of people used cach help system for cach half of the experiment. The primary
dependent variable measured was the time it took (o successfuly exccute cach task. The experiments

were videotaped, and times were computed from the time stamp on the vidcotape.

In order to limit the time of the experiment and to insure that no subject got bogged down with a
single task carly in the experiment, a cap of ten minutes was placed on task execution time. The tasks
were small enough that this was enough time for ncarly all subjects on nearly all of the tasks.2> When
a subject failed to complete a task in ten minutes, the experimenter showed him the right solution

(the right way to get the task donce) and then allowed him to go on to the next task.

6.3.2. Experimental Setting

The experiment took place in the User Studies lLaboratory of the Carnegic-Mellon University
Computer Science Department. The subject sat at a Xerox Alto personal computer cmulating a
60-linc video terminal with a mouse. using the rchat program. With the cxception of those subjects
who were using a human tutor as their help system (see below), the subjects were alonce in the room,
with the experimenter monitoring them on a video screen in the next room. The video cameras were
arranged to show a partial view of the subject, the experimental materials, and the subject’s computer
screen, in addition to the time stamp on the video tape. (The video tape included a time stamp in
milliseconds, although the length of a videco frame, about 17 milliscconds, defined the limit to the

precision of the measurements.)

6.3.3. Pretest and Typing Test

Prior to the experiments, a pretest was used to determine the expertise level of the subjects. Each
subject was classified in one of five ways: UNIX wizards, UNIX experts, UNIX novices who were
TOPS-20 experts, total novices, and those of mixed expertise. These classifications were discussed in
Section 6.1.3. Only the UNIX cxperts and UNIX novices who are TOPS-20 experts were studied in

these experiments.

23ln the pilot experiment, the cap was set at fifteen minutes. However, that experiment made it clear that this cap was
unnccessarily high. Ten subjects were studied when the cap was fiftcen minutes, and there was not a single instance where a
subject completed a task in more than ten but less than fifteen minutes. In general. the final five minutes were simply a time of
extreme [rustration for subjects who had gotten hopelessly stuck.

THE EXPERIMENTAL METHOD 79

It the subject fit into one of those two expertise categorics, the next stc:p24 was an explanation of the
experiment and a typing test. ‘The typing test was included in case variation in typing speed turned
out to contribute substantially to individual variation in task performance. It did not, and | would
recommend to anyone who uses this methodology in the future that they simply omit the typing test

to save themselves and their subjects a little time.

6.3.4. The Help Systems

As stated before, the independent variable was the help system. Fach subject was presented with a
written description of the use of the available help facilities, and was encouraged to practice using
these facilitics before the experimental tasks actually began. Each subject used the standard CMU
UNIX help system as a “bascline” condition during half the experiment, and one of the other help
conditions being studied during the other half. All of the help conditions studied will be described
below, along with a list of other conditions that were considered for study but rejected for various

reasons. The help systems actually studied are summarized in Table 6-2.

It should be noted that the assignment of subjects to help conditions was random, except that the
final help condition (H 4) was studied later than the other threc. Thus, the carly subjects were

randomly assigned to any condition except that one, and the last subjects were assigned to H,.

Table 6-2: Help Systems Studied in the Experiments
(details in Section 6.3.4)

Help System Description

H0 Standard CM U UNIX help system (man/key)

Hl Hybrid system: man/key with texts from ACRONYM
H2 Fully implemented prototype system (ACRONYM)
H3 Ever-present human tutor

H, Simulated natural language help system.

”4Actually, the pretest was often adminisicred prior to the date of the experiment. via campus, clectronic, or US mail. Thus
the “next step” déscribed here was actually the first step in the experimental setting for most of the subjects.

80 THE DESIGN AND FVAL UATION OF ON-LINE Hi TP SYSTEMS
6.3.4.1. The “Baseline™ Help System: man and key

The “bascline” help system, which each subject used for either the first or second half of the
experiment, is the standard help system used on the CMU UNIX systems. This system consists of
two commands, man and key. The man command is used to print the complete UNIX manual entry
for a given command. The key command can be used to find out about unknown commands; users
type “key file”, and the system prints a single descriptive line for each manual entry that it finds for
the key word “file”.

This system embodies the key word help paradigm discussed in Chapter 2, but it does so less than
idcally. First, the texts are of extraordinarily poor quality, by almost any standard. Second, the key
word lookup is done in a very stupid manner: a key word matches a manual entry only if the word is
exactly a substring of the first linc of that manual entry. Third, the man command, for printing out
manual entries, is very slow because it runs the entire manual entry through the nroff text processing

utility before printing it out.

Subjects using the baseline system (HO) were alsc supplied with a physical copy of the UNIX
manual, so that they did not actually have (o sit still and wait for the man command to perform. They
were also supplied with a booklet called “UNIX for Beginners”, which is gencrally supplied as part of
the standard UNIX documentation for new usecrs. Finally, they werc supplied with a short
instruction sheet explaining the usc of the help system and manual, which is reproduced in the

experimental materials in Appendix A.

6.3.4.2. The Hybrid System

The sccond help condition studied, condition Hl, was a hybrid system that consisted of the same
mechanisms used in the standard system (HO), but with better texts (derived from the ACRONYM
help system described in Chapter 5, and hence derived in large part from Sobell’s book [112]). The
mechanisms were the same as the standard system at the user level, but performed better -- the man
command was faster, and the key command, though somewhat slower, did a much more thorough
search for key words. This hybrid system is thus basically just HO with better texts, but is probably
better thought of as the standard system done right. Users of the hybrid system received exactly the
same instruction sheet and supplementary materials that were given with the bascline system. Of

course, they recieved a paper copy of the manual which contained the improved, non-standard texts.

THE EXPERIMENTAL METHOD 81
6.3.4.3. The ACRONYM Help System

Help condition H, was the multi-featured prototype help system, ACRONYM, described in
Chapter 5. Users of ACRONYM in these experiments were given a short set of instructions in its

use, which is included in the experimental materials in Appendix A.
6.3.4.4. The Human Tutor

Help condition H 3 was a human tutor. Subjects with this help condition were allowed to ask any
question of the tutor, but were not allowed to rely on the tutor’s prior knowledge of what the problem
was. Hence, all they had to do was to state the problem clearly in order to have the solution
explained to thern. Subjects using human tutors were given a short page of instructions, which are

included in Appendix A.
6.3.4.5. Simulated Natural Language Help

The final help condition studied, condition H,, was a simulated natural language help system.
Subjects with this help condition were allowed to ask any question in natural language typed on their
keyboard: the responses were determined by the experimenter in the next room, whose participation
was not known to the subjects and came as a surprisé to all of them when the deception was revealed
after the experiment. Special support software allowed the experimenter to react quickly to each help
request by sending the user a small portion of the ACRONYM database; thus the experimenter acted
as an English-to-ACRONYM translator. The instructions given to subjects with this help condition

are included in Appendix A.

6.3.5. Tasks

There were 22 tasks for novices and 22 for experts, divided evenly into two comparable scts. At the
midpoint of the experiment, the subject were shown a different way of getting help, and were
required to use that second method during the second half of the experiment. The task order was
fixed throughout the experiment; the nature of the tasks themselves imposed at least a partial
ordering, making it difficult to vary the task order in any reasonable way. A complete summary of

the tasks for the experiments is given in Table 6-1, on page 74.

82 THE DESIGN AND EVALUATION OIF ON-LINE HELP SYSTEMS
6.3.6. Posttest

The final part of the experiment was a posttest, in which subjects were asked to provide on paper
some evidence of retention of what they had learned. A questionnaire asked cach subject simply to
provide the command used to exccute certain tasks. This test measured the extent to which the
information learned was immediately discarded. It was included to test the hypothesis that material

which is learned more quickly is also more readily forgotten.

THE EXPERIMENTAL METHOD

Part Three
The Results

83

34

THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

RESULTS OU THE EXPERIMENTS 85

Chapter 7
Results of the Experiments

7.1. Basic Comparison of the Help Systems

'The basic purpose of the experiments was to compare the case of learning to accomplish new tasks
using a number of different help systems. Those help systems were described in Section 6.3.4, and
are summarized for convenience in Table 6-2 on page 79. In this section, I will describe the results of

the experiments.

The experiments yielded a complex set of multivariate data. It proved necessary to analyze the data
in several different ways in order to provide a complete picture. In this section, the results will be

broadly summarized, with a more detailed analysis following in subsequent sections.

In each of the sections that follow, the results of the experiments will be presented first for the
novice experiments, and then for the expert experiments. The differences between these two sets of

results will be discussed in Section 7.4.

7.1.1. The Basic Novice Results

Every one of the four help systems that were compared to the standard CMU UNIX help system
yielded a significant improvement over that system, confirming the widespread impression that the
standard UNIX help system is very poor. This is not terribly surprising; UNIX was chosen as the
implementation domain in large part because its help system seemed to offer so much room for

improvement.

Of greater interest is the relative degree of improvement each of the four systems offered. Also not
surprisingly, the best system was the human tutor, which yiclded significantly better results than the
other threc non-standard systems. Those systems were statistically indistinguishable. Perhaps most
interesting, the difference between the standard UNIX system and the other systems was about the

same as the difference between those systems and the human tutor. Thus, although none of the

86 THE DESIGN AND EVAL UATION OF ON-F INE HELP SYSTEMS

experimental systems performed as well as a human tutor, they did make up for about half of the

difference between the standard UNIX help system and a human tutor on the tasks studied.

These highest-level results for novices are summarized in Table 7-1. This table’s first column
presents the average time per task for cach of the five help systems. No data regarding variation due
to subjects and tasks are figured into that column, which accounts for the cxtremely high levels of
variance. ‘The sccond column presents “normalized” averages for the same data. 'The normalization
was done by the following procedure: First, a weighting factor was computed for cach subject based
on his performance using the baseline help system (H o 'The average total time it took all subjects
who used that help system to complete those eleven tasks was divided by the time it took a particular
subject to complete those tasks to obtain the weighting factor for that subject. All of the subject’s
scores for both help systems that he used were then multiplied by this weighting factor. That is, for

cach subject S, the weighting factor w, was computed by the formula:
11

Z #4,
i=1
i 11

; #T,
where Aj is the average tinjlg it took subjects using H, to execute task j, and TiJ is the actual time it
took subject Si to exccute task j. Note also that j actually sometimes goes from 1 to 11, and sometimes
goes from 12 to 22, dependening on whether the subject used H in the first or second half of the
experiment; the limits on the summation in the numerator follow those in the denominator in this

regard.z5

After each subject’s scores were normalized by this procedure, overall averages were computed.
The normalized averages thus compensate in large part for variation among subjects, and hence
correspond more closely to the findings of the regression analysis to be reported in Section 7.2..
However, they still have very high variances due to the variation among tasks. (Task execution times
ranged from under ten seconds to ten minutes.) This variation is sufficiently large to preclude any
significant results. Thus Table 7-1 does not present the data in the form in which significant results
were obtained, but merely summarizes the overall trends; the regression analysis, to be explained

below, yields the significance asserted to exist in the results.

251t would be more correct to say that the summations go from A(L,i) to A(12.i) in this regard, where A(x,y) is defined to be
x for those S. who used H.. in the first half of the experiment, and x+11 for those who used it in the second half. However,
this seemed overly formal and even harder to read.

RESULTS OF THE EXPERIMENTS 87

Table 7-1: Summary of Novice Experiments

(Significantly different systems are separated by a blank line.
Significance is derived not from these measures but {from regression.)

Code Description Average time Normalized time
pertask (S1D) pertask (SD)

H, Standard (man/key) 167.0(173.8) 167.0(161.7)
H, Simulated Natural I.anguage 101.4 (131.5) 123.0(150.2)
H1 Hybrid (man/key, ACRONYM texts) 136.9 (129.0) 115.4 (105.5)
H, Full ACRONYM 116.7(122.2) 103.0(104.8)
H3 Human Tutor 45.6 (23.8) 60.1 (27.8)

7.1.2. The Basic Exper@ Resulits

The expert experiments are summarized in Table 7-2, in the same format as Table 7-1. By chance,
the average time for experts using the standard help system was almost exactly the same as the
average for novices using the standard help system, despite the fact that the task sets were almost
entirely different. Aside from the fact that experts were not studied using the simulated natural
language help system, there are two obvious differences between the novice and expert results. First,
the ACRONYM system did not perform nearly as well for the experis. Second, human tutors were
not nearly as useful for the experts. ACRONYM was not significantly distinguishable from the
baseline system, while a human tutor was not significantly distinguishable from the hybrid system.

The meaning of these somewhat surprising results is discussed in Section 7.4.

Table 7-2: Summary of Expert Experiments

(Significantly different systems arc separated by a blank line.
Significance is derived not from these measures but from regression.)

Code Description Average Time Normalized time
per task (SD) per task (SD)

Ho Standard (man/key) 168.7(181.3) 168.7 (180.1)
H, Full ACRONYM 142.8 (120.1) 138.7(1244)
H, Hybrid (man/key, ACRONYM texts) 135.8(156.5) 116.4(134.3)
H, Human Tutor 79.4 (61.2) 103.2 (80.4)

88 ‘ THE DESIGN AND EVAI UATION OF ON-LINE HELP SYSTEMS
7.2. Regression Analysis

The primary test for significant differences between the help systems was regression analysis, using
the analysis program MINITAB[104]. The data were treated as a s¢t of observations of four valucs.
Each observation included the task, the subject, the help system, and the log of the time to complete
the task. The first three were converted to indicator variables -- Boolean variables which indicated
whether or not a given discrete value of the primarily value was observed. Thus, since there were 22
tasks. there were 22 indicator variables for the tasks. For cach obscrvation, cxactly one of these 22
variables was 1 while the rest were 0. Similarly, there were 5 indicator variables for help systems, and
20 indicator variables for subjects. Regression analysis was then used to obtain a regression equation
which indicated the effect of cach of the indicator variables on the dependent variable, the time it

took to complete the task.

The regression analysis yielded significant differences due to help system variation, as reported in
the previous section. Not surprisingly, significant differences were also found due to task variation
and subject variation. These results will be discussed in Sections 7.5 and 7.6. Table 7-3 summarizes
the results of the regression analysis of the data from novice users. The constant in the equation, 4.29,
indicates the predicted log time when all of the indicator variables in the equation are zero -- in this
case, when the first subject exccuted the first task using the bascline (standard UNIX) help system.
The remaining variables show the effects of different subjects, tasks, and help systems; the
“Coefficient” column shows how much the predicted log time is changed, while the T ratio gives a
measure of the significance of this change. Table 7-4 gives the results of the identical analysis of the

expert experiments.

It is interesting to compare the results of the regression analysis to the cruder measures of help
system variation that were summarized in Tables 7-1 and 7-2. Tables 7-5S and 7-6 demonstrate this
comparison by listing, for each of the non-standard help systems, the actual decrease in average task
time observed in the experiments, the decrease in normalized average task times, and the decrease in
log time asserted by the regression analysis. (By “decrease”, what is meant here is the average
reduction in time when other factors are held constant and the help system changes from the baseline
help system to some other help system.) It is reassuring to note that the regression results show

basically the same thing that the normalized averages showed, only with a higher level of confidence.

It should be noted that the T ratios given in the regression tables in this chapter measure only the
significance of the difference of a given condition from the “all zeroes” condition. In particular, the

significance of differences between the other cases is not given explicitly in the tables. However, due

RESULTS OF THE EXPERIMENTS

Table 7-3: Regression Analysis of Novice Data

40
=429+ Z cx,
i=1

Variable Meaning Coefficient T Ratio (Cocfficient/SID)
Y [.og of task execution time
Constant Task 'l'l. Subject Sl‘ Help HO 4.2889 14.94
X 1 Subject S, 0.1780 0.65
Xy Subject SS 0.9796 3.64
X3 Subject S 4 -0.0556 -0.21
X4 Subject S5 0.1513 0.56
X Subject S() -0.0480 -0.18
X 6 Subject S7 0.2232 091
X7 Subject SS 0.1759 0.71
X8 Subject 89 0.1458 . 0.54
X9 Subject S 12371 5.00
XlO Subject S -0.2200 -0.79
X11 Subject S12 0.2500 0.93
X12 Subject S -0.3570 -1.31
X1 3 Subject S1 4 -0.1048 -0.39
X1 4 Subject S 0.8545 2.80
X15 Subject Sl6 0.0531 0.20
X, 6 Help H1 (Hybrid) -0.2675 -1.53
X179 Help H, (ACRONYM) -0.3668 -2.15
X18 Help H3 (Tutor) -0.6095 -3.52
X19 Help H 4 (English) -0.3010 -1.65
X20 Task T2 0.3025 1.01
le Task 'l'3 0.1039 0.35
X22 Task T 4 0.0736 0.25
X23 Task T5 -0.4312 -1.46
X2 4 Task T6 -0.0560 -0.19
X25 Task T7 0.4494 147
X26 Task T8 . -0.2529 -0.85
X27 Task T9 -0.4343 -1.47
X28 Task Tl() -1.2560 -4.24
X29 Task T11 0.6135 2.07 °
X30 Task le 0.3786 1.26
X31 Task T13 0.5217 170
X32 Task T1 4 -0.0779 -0.25
X33 Task T15 -0.0768 -0.26
X3'4 Task T16 -0.7176 -2.39
X35 Task T 17 0.7218 244
)(36 Task TlB 0.0158 0.05
X37 Task T19 0.3121 1.04
X38 Task T20 -0.6085 -1.76
X39 Task T21 1.0288 3.48

- X 40 Task T22 0.6411 217

90 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTIMS

Table 7-4: Regression Analysis of Expert Data

35
y=429+ Z X
i=1
Variable Meaning Coefflicient T Ratio
{Coeflficient/SD)

Y 1.og of task execution time

Constant Task '['1. Subject Sl‘ Help 1 10 4.8348 17.21
X] Subject S, -0.3679 -1.57
X, Subject Sy 0.5257 -2.55
X3 Subject S4).1238 -0.53
Xy Subject 85 -0.4390 -2.16
X5 Subject Sb 0.1475 0.61
Xb Subject S7 -0.2044 -1.01
X7 Subject 88 -0.8386 -3.48
X8 Subject 59 -0.5267 -2.22
X9 Subject S]() -0.4866 -2.09
Xl 0 Subject S 1 -0.3694 -1.49
Xl] Subject 512 -1.0153 -4.25
X12 Help H, (Hybrid) -0.3030 -1.97
)(J 3 clp 112 (ACRONYM) -0.0031 -0.02
Xl:1 Help H 3 (Tutor) -0.1906 -1.15
X1 5 Task T 04794 1.54
X 16 Task T3 -0.9443 -2.90
X]7 Task T 0.1818 0.54
X 18 Task T -0.1622 -0.52
X]9 Task T -1.4351 -4.69
X20 Task T -1.5989 -5.22
X2] Task T8 0.2018 0.63
X22 Task T 1.1099 3.57
X23 Task T10 0.2173 0.68
X2 4 Task T11 0.0249 0.07
X25 Task T . 0.0189 0.06
X26 Task T1 -0.0823 -0.27
X27 Task Tl 4 0.5323 174
X28 Task T15 14253 457
X29 Task Tl 6 1.2113 3.89
X}O Task T 0.2489 0.81
X:,’1 Task T]B 1.2841 420
X32 Task T]9 0.0642 0.18
X33 Task TZO -0.1733 -0.54
X3 4 Task T21 0.0156 0.05
X Task T -0.2482 -0.81

(v)
w

22

RESULTS OF THE EXPERIMENTS 91

to the general regularity of the data, the major differences suggested by large differences in I ratios
are borne out by a closer analysis of the data (regression with one of the conditions in question as the

“all zeroes™ case). ‘This is discussed in more detail in Appendix E.

Table 7-5: Comparison of Three Mcasures of Novice Variation

Help System H, H, H, H,
Hybrid ACRONYM lutor English
Average improvement in raw task time (scconds) -30.1 -50.3 -1214 -65.6
Average improvement in normalized time (seconds) -51.6 -64.0 -106.9 -44.0
Improvement indicated by regression (log seconds) -.27 -37 -61 -.30

Table 7-6: Comparison of Threec Measures of Expert Variation

Help System . H, H, H

Hybrid ACRONYM 'l"u3lor
Average improvement in raw task time (seconds) -32.9 -25.9 -89.3
Average improvement in normalized time (seconds) -52.3 -30.0 -65.5
Improvement indicated by regression (log seconds) -.30 -.00 -.19

7.3. The Importance of Text Quality

Possibly the most interesting and surprising of the results of this entire thesis is the performance of
the hybrid help system (Hl, the.S)}stem using the man/key mechanism to present texts from
ACRONYM). This system is completely identical to the bascline system in its mechanisms. It is
improved only in two ways: the texts are better and the key word indexing is more complete. These
simple, non-technical changes produced an enormous and unexpected improvement in the
performance of the users. In fact, this hybrid system performed as well as the full ACRONYM

system; the two were not signiﬁcantly distinguishable. .

This lack of significance was certainly not due to any lack of effort to find it. In fact, it was so
surprising that a supplementary experiment was performed. In that experiment, the subjects each
used both the hybrid system and the full ACRONYM system, instead of just one of those two and

the standard system. It was hoped that this more direct comparison would establish a significant

92 THE DESIGN AND EVATUATION OF ON-TINE HELP SYSTEMS

difference, as the carlier data allowed the possibility that a small difference was being dwarfed by the
effects of subject variation. However, no such difference was found: the supplementary experiment

merely reinforced the lack of significant difference between ACRONYM and the hybrid system.

The first conclusion that comes to mind from this result is that help access methods matter little, if
at all, and that designers of future help systems should make do with simple mechanisins, devoting all
of their efforts to clear and well-indexed texts. This conclusion, however, is somewhat premature.
An alternative hypothesis is that cach of the two systems have certain advantages which balance cach
other roughly equally. This hypothesis is far more likely, given the results of previous rescarch which
suggest the superior readability and comprehensibility of printed text when compared to on-line texts
[73]. The ACRONYM system is totally on-line, and is geared to producing short picces of texts in
response to various forms of help requests, which makes it difficult to conceive of a version of
ACRONYM that would make good use of a printed manual. Thus, it seems likely that the superior
readability of the hard copy (printed texts) in the hybrid system (compared to the screen used in
ACRONYM) compensates for some superiority in the access mechanisms of ACRONYM. (In fact,
there must be some such compensation going on, becausc ACRONYM is the first reported help
system that performs as well without a printed manual as a simple help system that does include such
a manual. This is itself extremely important for those concerned with issues of documentation
currency; if it is in fact reasonable, with a system like ACRONYM, to throw away paper manuals
entirely, it will be much easier to ensure that all users will have up-to-date documentation at their
disposal.) Thus it is safe to conclude from the performance of the hybrid system that text quality is
one of the most important factors in help systems\26 but it is not safe to conclude that help access
mechanisms are entirely irrelevant. The role of the improved key word indexing in the hybrid system
should also not be neglected, although this was probably not as important as the variation in text

' quality.

An interesting problem, in large part beyond the scope of this thesis, is to try to determine precisely
what makes the texts in the hybrid system so much better than the standard UNIX manual texts.
Although no comprehensive, detailed study was made, a few informal tests did yield some hypotheses

about the major source of the difference.

Three people who study documentation professionally --one préfessiona] writer of technical

documentation, and two researchers in the area of document design --were shown samples of the two

26Indeed. these results clearly speak very well for the book from which the ACRONYM texts were taken [112].

RESULTS OF 1T EXPERIMENTS 93

sets of texts and asked o compare them. Al three chose the texts from the hybrid system as the
better texts without hesitation, suggesting at least that the intuition of the professional can be trusted
to choose the texts that are objectively most useful. However, they offered varying opinions about
why this text was better. One suggested that a major factor was the instructional orientation of the
text: whereas the standard texts spoke in largely passive voice, or at least in third person, the hybrid
texts were largely second person and imperative. Another of the evaluators suggested that the most
important factor was the organization of the text into short, coherent subsections, with mecaningful
and highly-visible scction headings. The third evaluator suggested that the texts differed simply in
their readability -~that is, in the complexity of the words and sentences used in the explanations. Of

course these explanations are by no means mutually exclusive.

One hypothesis that was easily testable was that readability -- as defined by standard metrics of text
readability -- was a major factor in the relative usefulness of the two sets of texts. The UNIX system
includes a utility program called style [15, 16] which evaluates texts according to four standard scores
of readability. The two scts of texts being discussed here were each subjected to this evaluation, with
the results shown in Table 7-7. Despite the enormous differences between the texts, as shown both
by the experiments and by the immediate impressions of everyone who has looked at them, none of
the four metrics yielded any significant differences between the two sets of texts. This will come to

no surprise to the many who have argued against the utility of such readability scores [28].

Table 7-7: Readability Analyses of the Two UNIX Manuals

Metric Sobell/ACRONYM Standard manual Average Difference (SD)
texts texts average (SD) texts average (SD)

Kincaid 99(4.1) 9.9 4.5) -0.0(2.8)

auto 9.9 (4.8) 94 4.7 -0.5(3.2) -

Coleman-Liau 9.4 (4.3) 9.3(4.3) -0.1(1.8)

Flesch 10.2 (4.1) 10.3 (4.1) 0.1(.6)

Because no final conclusions could be reached about the exact causes of the performance.
improvement obtained with the better texts, it seems likely that readers will want to compare samples
of these texts themselves. Such samples are included as Appendix D. The interested reader can
compare the excerpts presented there from the two versions of the manual and reach his own

conclusions regarding the factors that account for the great difference in their usefulness.

94 FHE DESIGN AND EVAT UATION OF ON-TINE HELP SYSTEMS
7.4. User Expertise and Help System Design

I'he hypotheses listed in Section 1.3, on page 10. demonstrate a strong belief, when the experiment
began, in the idea that novice and expert users would have strongly differing needs and usecs with
regard to help systems. 'This expectation, based on simple intuition, has since been rendered suspect
by Draper [27]. However, scparate experiments were conducted on these two categories of users in

order 1o observe any differences.

The expert experiments paralleled the novice experiment, except that a simulated natural language
system was not studied. (Such as system is gencrally alleged to be most uscful for novices anyway.)
The differences between the two groups were indeed striking, but not in a way that was expected
prior to the experiment. ‘Those results were summarized in the preceding sections, and show two
major differences between experts and novices: The experts fared much more poorly with
ACRONYM and with a tutor than did the novices.

The poor performance of ACRONYM for experts was puzzling at first, but at least one plausible
explanation (besides the obvious but unlikely explanation that ACRONYM is simply a bad system
for experts although a good one for novices) can be advanced. Draper [27], in his studies of the
nature of UNIX expertise, suggests that the only clear criterion which differentiates experts and
novices on a complex system such as UNIX is their relative ability to find the information they do not
already have. That is, the best definition of expertise in a system may be the ability to use that
system’s help facilitics, both on and off line. If this is the case, then the results of this study make
perfect sense: by improving the texts but keeping the mechanisms the same, the hybrid system
allowed the experts to utilize their expertise with the help system while gaining access to better help
texts. ACRONYM, on the other hand, made up for the fact that it provided better help texts by
making the experts learn entircly new help rﬁéchanisms. An attempt was made to test this hypothesis
by studying UNIX experts who used ACRONYM over a longer period of time, but this proved
inconclusive.?’

It should be noted that the novice and expert tasks did include three overlapping tasks; these were

tasks that involved simple commands, but the commands were invented by the experimenter and

27Approximately a dozen UNIX users used a modified version of ACRONYM as their primary help system for a month.
At the end of that month, however. it became clear that the average user had only needed help a very few times, and in most
cases had needed help with regard to system calls, subroutine libraries, or other aspects of UNIX not covered by the
ACRONYM database. Thus the experts never had a chance to become as familiar with ACRONYM as with the standard
system. To be successful, it seems, an experiment like this would have to monitor novices who start with ACRONYM and
keep using it until they become experts. Such a study is beyond the scope of this thesis.

RESUL IS O THE FXPERIMENTS 95

hence were unknown o the experts. (Specifically, the commands were del. Isd, and undel, which
reversibly delete files, list deleted files, and restore deleted files, respectively.) However, the amount
of data provided by these three overlapping tasks was inadequate to shed any additional light on the

differences between experts and novice performance.

7.5. Variation due to Tasks

As the regression analysis (Tables 7-3 and 7-4) shows, there was a significant amount of variation
duc to tasks. This is not surprising; some tasks arc inherently harder than others, and thus take
longer regardiess of the help system used. However, the regression analysis merely tells us which
tasks were hardest; it does not shed any light on the question of whether harder or casicr tasks fared

particularly better with one help system or another.

In fact, the results become considerably clearer when the difficulty of the tasks is taken into
account. For example, Figures 7-1 and 7-3 plot the average time taken on a given task using the
bascline help system against the average time taken using cach of the other help systems. These
graphs show quite clearly that the differences detected by the study arc more meaningful for the

longer tasks.

This might suggest to the alert reader that, by omitting the data from the shorter tasks, a formal
analysis might yield statistically significant differences between help systems that are grouped
together as not distinguishable in Tables 7-3 and 7-4. This indeed is a reasonable supposition, but not
one that proved to be correct when the analysis was performed. The significance levels did increase
as the cutoff for task times was increased, but the amount of data became inadequate for the
regression analysis before a level was reached at which further significant results could be detected.
ACRONYM seemed to bencfit the most by eliminating the shortest tasks, possibly because its more
complicated mechanisms introduce a relatively large constant factor into cach task execution,
regardless of its length. “The effect of omitting data for those tasks with average baseline times less
than 2.5 minutes is shown in Figures 7-2 and 7-4. The relative performance of ACRONYM and the
hybrid system in the expert data is most interesting in this regard. Clearly ACRONYM fared much

better for the more difficult tasks than for the shorter ones.

It is also interesting to consider the possibility that different help systems may have been the most
useful on different tasks. In Figures 7-5 and 7-6, the average time on each task is plotted for each of
the different help systems. In these graphs, the x axis simply represents 22 points, one for each of the

tasks. The tasks here are ordered by decreasing average task time with the baseline help system, in

96

THETOESIGN AND EVALUATION OF ON-LINE HELP SYSTIMS

Figur ¢ 7-1: Difficulty of Novic ¢ Tasks and Help System Variation

Average time (seconds) with system graphed

o
]
o

5001

400t

300t

200t

100t

(=]

€ —@® Baseline (man/key)

¢ - —-© Hybrid .
LEEEEEE * ACRONYM

£ — A Tutor

»~ — x Simulated English

50 100 150 200 250 300 350 400
Average time (seconds) with baseline help

Figu re 7-2: Help System Vari ation on the Hardest Novice Tasks

Average time (seconds) with system graphed

6001 ©——=@ Baseline (man/key)
¢ —-—-© Hybrid "
LR * ACRONYM
500 . _ . Tutor
= — % English
400t
300}
200t
100}
o 50 100 150 200 250 300 350 400

Average time (seconds) with baseline help

RESULTS OF THIY |

XPERIMENTS

Figure 7-3: Difficulty of Expert ‘Tasks and Help System Variation

2]
o
o

400

300

200

100

Average time (seconds) with system graphed
(®)

500t

[@——e Baseline (man/key)
O -—-© Hybrid
L R + ACRONYM
&— — A Tutor
. -~ ’ -
- -~ ’ -
- -
' S
*
A
100 200 300 400 500 600

Average time (seconds) with baseline help

Figure 7-4: Help System Variation on the Hardest Expert Tasks

300

200

100

Average time (seconds) with system graphed

600¢

&——8 Baseline (man/key)
O~-—-© Hybrid

oo +* ACRONYM

a&— — A Tutor

I Y
#»*
i . /o_ o - A
é, - .
N
100 200 300 400 500 600

Average time (seconds) with baseline help

97

98 THE DESIGN AND EVALUATION OF ON-LINEF HEEP SYSTEMS

order to make the graphs more readable. ‘The tasks are listed in that order in Tables 7-8 and 7-9, so
that the anomalices in the figures may be analyzed casily. Figure 7-8 suggests, for example, that

ACRONYM could be fine-tuned by improving its help for the “rev” (02) and “Is” (Om) commands.

Obviously, it is possible to interpret thesc results in several ways. By isolating the tasks on which
ACRONYM performed most poorly. it is clearly possible to find several particular ways in which
ACRONYM and (more certainly) its database can be improved. Although this would be an obvious
next step in the development of a real-world system, its usefulness in this methodology is somewhat
suspect. In particular, if further experiments were conducted to verify the improvements, then they
would be susceptible to charges of having tailored the system to suit the tasks being tested. On the
other hand. if the data from the tasks on which ACRONYM fared most poorly were simply omitted,
this would be committing the classic experimental error of only considering the data that matched the
hypotheses. The best that can be said is that the results clearly demonstrate ACRONYM's usefulness
on certain tasks, while calling into question its usefulness for a few other tasks. Nonetheless, there is
no reason to assume that the particular improvements this analysis suggests would not significantly

increase ACRONYM'’s overall performance in the experiments.

The varying difficulties of the experimental tasks are a primary source of variation in the
experiment. Observation of the distributions of average task times for each help system can yield
additional insights into the way in which varying the help system affects the task cxecution time. This
is depicted for the novice data in Figure 7-7 and for the expert data in Figure 7-8. In each of these
figures, the first graph shows the average time to execute each task for each help system, ordered in
decreasing time within each help system. Thus, the various values at the same point on the X-axis are
not comparable in this graph, which should be viewed only for the distribution of average task times.
The remainder of the figures shows the distribution of the average task times as a separate histogram
for each help system, to further clarify the diferent distributions. Figure 7-7 suggests again, for
example, that while ACRONYM and the hybrid system were not distinguishable overall, this may be
due to a few glaring imperfections of ACRONYM with regard to certain tasks, and that the
fundamental ACRONYM paradigm may well be better.

RESULTS O THE EXPERIMENTS

Figure 7-5: Relative Performance of the Help Systems on Each Novice Task

600,

500;

Average time in seconds
N
Q
QO

®———@ Baseline (man/key)
& -—-© Hybrid
[R #* ACRONYM

A— -4 Tutor
x — —x Simulated English

10

14 16 18 20 22

Task number, from table below

99

Table 7-8: List of Novice Tasks, Ordered as in Figure 7-5

Find string in file (grep)
Move file (mv)

View file backwards (rev)
Print file on dover (cz)
Delete full directory (rm -r)

[}

RS

View file (cat, pr, more)

Print calendar (cal)
Send mail (mail)
0 Make new directory (mkdir)

CO00O0CO0C0O0OQO0

s NO OO0) ON LN

Message to another user (send, write)

Delete empty directory (rmdir, rm -

1
12
13
14
15
16
Y
18
o
0y

[ejejejjojejoojoRel

List deleted files (Isd)

Time of day (date, uptime, whenis)
Rename file (mv)

Change password (passwd)

Delete file reversibly (del)

List files (Is)

Print working directory (pwd)

List current users (u, users, w, who, finger)
Copy file (cp)

Restore deleted files (undel)
Change directory (cd, chdir)

100

“THE DESIGN AND EVAFUATION OF ON-LINE HELP SYSTEMS

Figure 7-6:

Relative Performance of the Help Systems on Fach Expert Task

600¢

500}

400}

Average time in seconds

100 y
s Y
R /

Id

A "

y \i {/\\;//g*eee-%)

o——@ Baseline (man/key)
& - —- & Hybrid

Hoo e * ACRONYM

& — ~-A Tutor

0 2 4 6 8

12 14 16 18 20 22
Task number, from table below

10

o0
o

O 0O00QOO0OCO O
NoN= = N A N Wy o

—
o

Table 7-9: List of Expert Tasks, Ordered as in Figure 7-6

View only printable strings (strings)
Execute remote command

(cmuftp r g - = "[date"”)

Retrieve file from Onyx server-

(ecp -u guest guest 'Tomx](AltoDocs)chat ty" chat.ty,

Set setuid bit (chmod u+ s, chmod 4xxx)
Cancel pending mail requests (mailq -retain)
Sort in reverse order (sort -r)

Undelete old version of file (undel -g)

Sort ignoring capitalization (sort -f)

Find i number (Is -i)

Send to user logged in twice

(send -all, send user ttyxx)

List space occupied by deleted files (Isd -1)

List processes with no terminal (ps 1p?)
Change file protection (chmod o-r, chmod 640)

o (o)}
ot
o —

‘-L-:
(¥5)

Send to user on remote machine
(rsend user@host, send user @host)
Print file on dover with header (cz-k "..")

0Oy4

Ol 5 List processes for all users (ps a)

O] 6 Print on dover specifying font (cz-f)
O17 Delete file reversibly (del)

018 List processes on terminal ttypa (ps tpa)
019 List files by time modified (Is -7)

020 List deleted files (Isd)

O21 Restore deleted file (undel)

RESULTS OF THE EXPERIMENTS 101
7.6. Variation due to Subjects

Variation between subjects is a common problem in studics of this kind. 'The design of the
experiments reported here was carcfully structured to minimize the impact of such variation: this is
the reason that cach subject used both a variable help system and a bascline help system. While this
technique proved cffective enough to allow real differences to be detected, it is worth considering in

some detail how much the actual subjects varied in their performance.

A regression analysis identical to the onc reported above, but omitting all data on the
correspondence between users of the variant help systems and the bascline help system, was
performed. In Tables 7-10 and 7-11, the results of that analysis are summarized. Here, the same
subject using two different help systems was treated as two different subjects. As is clear from that
table, fewer significant differences were visible in this analysis, and the difference betwceen the tutor
and the baseline system was cxaggerated somewhat. (This latter phenomenon might be coincidental,
or might indicatc that users with a human tutor in the first half performed better with the bascline

system in the second half because of that initial positive experience.)

It is also instructive to consider the degree to which certain help systems performed best for
different individuals. In Tables 7-12 and 7-13, the normalized ratios of average task time a subject
nceded with a given help system o the average for that subject on the bascline system are given for
each subject in the experiment. (The normalization is necessary because the tasks in the second half
of the experiment are, on average, harder than those in the first half.) These tables show clearly the
degree to which the success of the help systems depended on the nature of the individual using them.
Most notably, one of the four novices using the simulated English system did unusually poorly, as did

one of the experts using a human tutor.

7.7. Retention Results

After each experiment, the subject was given a retention test. This test was designed to see what
portion of the cxperimental tasks were immediately forgotten. The hypothesis was that the help
systems which facilitated quick learning would show a reduction in retention, on the theory that
people remember best what they have to work the hardest to learn. The results are summarized in
Tables‘7-14 and 7-15. The only way in which help systems were found to have any significant effect
was that ACRONYM actually scemed to help experts to remember what they had learned. However,

even this result is of very low significance (p <.08).

THE DESIGN AND EVALUATION OF ON-1INE HIFTP SYSTEMS

Figure 7-7: The Distribution of Average Novice Task Times

Number of tasks

-~ = o=
O N &

o

N A O D

.'g 600, o———@ Baseline (man/key)
g O~ -—-© Hybrid
T Feroonn * ACRONYM
8 500t . A — -A Tutor
‘g * x — —x English
o 400}
E
% 300t
©
Ay
2
< 200}
1001- Q -
[~ —b—p X —x X
E—h ae & i A, x —‘E——’l&——vg._:i ‘Q-.ﬁ -
0 2 4 6 8 10 12 14 16 18 20 22
Task # (different order for each help system)
(See Scction 7.5 for an explanation of these figures.)
f‘" 14, Baseline (man/key) _‘;“) 14, Hybrid
n 12 n 12}
S 3
w 10} w 10}
5 o
s 8t 5 8}
£ 6} £ 6}
3 4 3 4 1
2 r] 2 o I
(0] 2 4 6 8 10 (0] 2 4 6 8 10
Average minutes Average minutes
ACRONYM 2 18 I 14 [English
» 16} »n 121
S 141 Tutor 2
_ 5 12| 519
5 10} 5 8| .
Q i Q
i £ £ 9
i 41
2 4] <
2| —l 2}
ST — . , , —
2 4 6 8 100 0 2 4 6 8 100 0 2 4 6 8 10
Average minutes Average minutes Average minutes

RESULLS OF THE EXPERIMENTS

Figure 7-8: The Distribution of Average Expert Task Times

% 60 @——@ Baseline (man/key)
e O - —- & Hybrid
o R * ACRONYM
8 500t A— —a Tutor
17}
.E <
o 400}
E
g 300
S
N
< 200
100}
(o] 5 10 15 20 25
Task # (different order for each help system)
(See Section 7.5 for an explanation of these figures.)
‘_Q 14, Baseline (man/key) g 14, Hybrid
n 12} n 12}
® s L
A 10\- Ay 10-
o °
5 8 5 8
t 6} £ 6}
34 3 4
2 o l——! 2 d I——I
(o] 2 4 6 8 10 (o) 2 4 6 8 10
Average minutes Average minutes
_‘Q 14, ACRONYM _‘Q 14, Tutor
»w 12} n 121
S L]
« 10} « 10}
° o
E 8} § 8
E 6} £ 6f
2 4 2 4
] T :
(0] 2 4 6 8 1 (0] 2 4 6 8 10
Average minutes Average minutes

103

104 THE DESIGN AND EVALUATION OFF ON-TINE HETP SYSTEMS

Table 7-10: Novice Regression Analysis. Omitting Within-Subjects Comparisons

Variable Meaning Cocfficient T Ratio (Coefficient/SD))
Y 1.og of task cxecution time

Constant Task 'l']. Help ll0 4.3858 17.87
X] Help lll -0.0598 -0.39
X2 H»clpll2 -0.1745 -1.16
X3 Help 113 -0.8542 -5.73
X4 Help I, -0.4685 -2.92
X5 Task 'l‘2 0.3699 112
)(6 Task T, 0.1713 0.52
X7 Task T;‘ 0.1410 043
X8 Task T -0.3102 -0.95
X9 Task T;’ ‘ 0.0817 0.25
X] 0 Task T, 0.4983 149
X n Task Tg -0.1319 -0.41
X12 Task T9 -0.3133 -0.96
XU Task TlO -1.1350 -3.49
Xl;i Task T 0.7345 226
X1s Task T, 0.4455 135
X, 6 Task T 0.6929 2.07
Xy7 Task Tl 4 0.0166 0.05
X] 8 Task T15 0.0442 0.14
X1g Task T, -0.6390 -1.94
X20 Task T 17 0.8428 2.59
)(2 1 Task T18 0.0944 0.29
X22 Task '1‘19 0.4603 1.40
X23 Task T20 -0.4134 -1.10
X4 Task T2] 11498 354
X25 Task T22 0.7622 235

RESULTS OV THE EXPERIMENTS 105

Table 7-11; Expert Regression Analysis, Omitting Within-Subjects Comparisons

24
=429+ Z cx,
i=1

Variable Meaning Coefficient 1" Ratio (Cocfficient/SD)
Y [.og of task exccution time

Constant Task "l'l, Help ”0 44350 17.36
X1 Help]I] -0.1217 -0.92
X2 Help 112 0.0909 0.72
X3 Help 113 -0.5106 -3.55
X 4 Task '1‘2 0.5026 1.53
X5 Task T3 -0.9955 -2.89
)(6 Task '14 0.2351 0.66
X7 Task 'I‘5 -0.1830 -0.55
X8 Task T() -1.4237 -4.39
X9 Task '1'7 . -1.5876 -4.90
X10 Task TS 0.1498 045
X 1 Task T9 : 1.0905 331
X12 Task T10 . 0.3051 0.91
X 13 Task T11 0.0397 0.11
X 14 Task T12 0.0582 0.18
X15 Task T 13 -0.0709 -0.22
X 16 Task T 0.5437 1.68
X17 Task T 1.3879 421
X 18 Task T 12374 375
X 19 Task T 17 0.2603 0.80
X20 Task T'l 8 1.2955 4.00
X 7 Task T 0.0458 0.12
X22 Task T. -0.2174 -0.65
X23 Task T 0.0524 0.16
X2 4 Task T22 -0.2368 -0.73

106 THE DESIGN AND EVALUATION OF ON-UINE HEFEP SYSTEMS

Table 7-12: 'the Effect of Novice Subject Variation

Subject Normalized Other Help Normalized Ratio of Other
Baseline System Used Score on Score to
Score Other System Bascline Score

S7 1.0 ”l (Hybrid) 06 0.6

S0 08 [Il (Hybrid) 06 0.7

S9 2.3 Hl (I1ybrid) 21 09

Sb 07 lll (Hybrid) 09 1.3

S8 11 1, (ACRONYM) 05 0.4

S4 08 Ili (ACRONYM) 07 09

S2 1.7 Hz(/\CRONYM) 16 0.9

Sl | 09 H2 (ACRONYM) 08 1.0

S10 0.7 H, (Tutor) 03 04

S 5 09 1-13 (Tutor) 0.3 04

Sl 10 H, (Tutor) 0.5 0.5

83 0.6 H 3 (Tutor) 04 0.6

S12 0.5 H4 (English) 03 0.6

513 0.8 H 4 (English) 0.5 0.6

S14 13 H, (English) 11 0.9

S‘15 1.0 H4 (English) 19 1.9

Table 7-13: The Effect of Expert Subject Variation

Subject Normalized Other Help Normalized Ratio of Other
Baseline System Used Score on Score to
Score Other System Baseline Score

S1 14 H, (Hybrid) 0.5 04

59 10 H1 (Hybrid) 07 07

S3 11 H_ (Hybrid) 11 1.0

S5 13 H 1 (Hybrid) 1.6 13

S2 1.0 H2 (ACRONYM) 07 0.7

S4 09 H2 (ACRONYM) 10 1.1

Sﬁ 11 H2 (ACRONYM) 13 12

S0 13 . !I2 (ACRONYM) 17 14

S 06 H, (Tutor) 03 0.5

58 10 H, (Tutor) 06 0.6

S7 05 H., (Tutor) 07 1.2

S.

0.8 H 3 (Tutor) 20 26

RESULTS OF THE FEXPERIMENTS 107

Table 7-14: Short-term Retention of Solutions by Novices
24

y=429+ cx,

i=1

Variable Mcaning Coefficient I Ratio (Coefficient/SD)
Y Average Retention Score

Constant Task Sct 1, Sl‘ HO 9.775 453
Xl Subject 52 11.000 4.11
X2 Subject S, 10.500 392
X3 Subject S;l 10.500 392
XI1 Subject 55 5.250 1.67
X 5 Subject S() 1.250 0.40
X 6 Subject S7 6.250 1.99
X7 Subject SS 11.750 374
X8 Subject 59 1792 0.61
X9 Subject S 10.000 334
X 10 Subject S. -0.292 -0.10
X 1 Subject 512 11292 3.84
X 12 Subject S 13.208 449
Xl3 Subject S 14 9.708 330
X14 Subject S 5 7.500 251
X 15 Subject S, 3.292 112
X16 Subject S17 6.000 201
X7 Subject S1 8.792 299
X 18 Subject S19 - 7.500 251
X 19 Subject 520 13.208 449
XZO Task Set 2 -1.0500 -1.24
le Help Hl (Hybrid) -0.917 -0.59
X22 Help H2 (ACRONYM) 0.917 0.59
X23 Help 113 (Tutor) -1.500 -0.79
X2 4 Help H, (English) 0.500 0.26

108 : THE DESIGN AND EVALUATION OI' ON-LINE HELP SYSTEMS
7.8. Subjective Results

Finally, an attempt was madc to obtain the subjective impressions of a few subjects. As was
mentioned previously, a supplementary cxperiment was conducted in which the same experimental
methodology was used, but the subjects were never given the bascline help system: instcad, cach
subject got both H2 and HI, ACRONYM and the hybrid system. As was stated previously, »this
experiment viclded no significant differences in performance between the two systems. However,
after cach experiment was over, the subject was given a questionnaire asking him to rate the two
systems on a number of criteria; for cach criterion. subjects were asked whether they strongly or
mildly preferred onc of the systems, or had no opinion. The results of this survey proved mildly
favorable v ACRONYM, as shown in Table 7-16. However, the results of this survey of only four

subjects have no statistical significance.

RESULTS OF THE EXPERIMENTS

109

Table 7-15: Short-term Retention of Solutions by Experts

15

=429+ Z cx,

i=1

Variable Meaning

Y Average Retention Score
Constant Task Set L, Sl‘ Ho

X 1 Subject S2

X) Subject S3

X3 Subject S 4

X 4 Subject S5

X 5 Subject S6

X6 Subject S7

X7 Subject 88

X8 Subject 59

X9 Subject S10

xlO Subject S11

X11 Subject S12

X12 Task Set 2

X13 Help H1 (Hybrid)

X1 4 Help H2 (ACRONYM)
X15 Help H3 (Tutor)

CocfTicient

21.667

-0.000
-3.000

© -0.500

0.500

-3.500
-1.500
-7.000
-0.500
-3.500
0.000

-3.000

-1.8333
-0.500

2.500
0.500

T Ratio (Cocfficient/SD)

13.41

-0.00
-1.36
-0.25
0.25

-1.58
-0.68
-3.16
0.23
-1.58
0.00

-1.36

227
-0.36

1.79
0.36

Table 7-16: Subjective User Preferences: ACRONYM versus the hybrid

For each statement. the subjects circled a number from 1 to 5, where 1 indicated a strong preference for the man/key system
and 5 indicated a strong prefernce for ACRONYM.

Mean (SD)
3.25(1.30)
3.25(1.09)
3.00(1.58)
325(1.09)
4.00(0.71)
300(1.22)
3.25(1.48)
3.25(1.48)
3.25(1.09)
3.50(1.12)
3.25(1.09)
3.25(1.48)
329(1.27)

Statement

The system quickly found the relevant help information.

The system quickly told me what I wanted to know.

The system was easy to use.

The system presented texts that were easy to understand.

The system reassured me when I was confused.
The system made learning how to do the tasks easier.

1 felt in control of the help system.
1 enjoyed using the help system.

I generally understood what the help system was doing.

I generally found the answers where 1 expected to find them.

The system made using the computer more enjoyable.

The system made using the computer more productive (made me work faster).

Overall Average Score

Individual mean ratings ranged from 2.0 (SD 0.91), a mild preference for man/key, to 5.0 (SD 0.00), a strong preference for

ACRONYM.

110 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

CONCLUSIONS 111

Chapter 8
Conclusions

The research reported in this thesis began with a simple goal: to find out why on-line help systems
arc commonly so bad, and to scc what can be done to make them better. Such a broad goal tends to

be clusive, but a number of important discoverics have been made, which will be summarized below.

8.1. What Has Been Learned About Help Systems

The results reported in Chapter 7 include a number of important specific facts about help systems:

1. A good help system can easily make up half the difference between an ordinary bad help
system and a human tutor.)

2. The most important determining factor in the “goodness”™ of a help system seems to be
the quality and nature of the texts it presents, rather than the details of the help access
mechanisms.

3. Although people read faster from paper, a paper manual is not essential; at the worst,
moderately sophisticated access mechanisms at a high enough bandwidth can apparently
compensate for the total absence of paper.

4. Without spoken input or output or dynamic gencration of text using fecdback from the
user, English does not seem to offer any significant benefit as an interaction language for
help systems.

5. Expertise in a large and complex domain seems to be in large part a function of the user’s
familiarity with the available methods for getting help. Thus expert users benefit less
than novices from the presence of a human tutor or a sophisticated but new and different
help system.

6. Implementing a moderately sophisticated help system, integrating several different help
access mechanisms, is actually a relatively simple and straightforward programming task.
Its cost and difficulty arc sufficiently low that it scems reasonable to hold designers of
future help systems to a much higher standard than the help systems in common use
today.

'The rescarch clearly indicates that the quality of help texts is far more important than the way those

112 THE DESIGN AND EVALUATION OIF ON-LINE HELP SYSTEMS

texts are accessed o1 presented, inasmuch as “important” means “contributes to quickly learning to
exccute a predefined set of tasks.” However. it is surcly premature to assume, on the basis of this one
set of experiments, that human intuition is entirely unreliable where help systems are concerned.
Several people who “should have known better” completely expected that cither ACRONYM or the
simulated English system would be the clearly superior help system. It is likely that there is some
validity to their intuitions, but that those systems offer benefits in ways not mecasured by this

methodology.

In particular, it scems possible that having English available may have reduced the subjects’
perception of the difficulty of their tasks, and hence made the learning situation less stressful even if
it did not measurably improve performance. Morcover, it should also be noted that the simulated
English system was not, in some ways, a complete test of natural-language based help systems. In
particular, better results might have been obtained with a system which responded to spoken help
requests or which dynamically generated texts to suit the individual. The system tested here did
neither. Finally, even if the results do suggest that natural language may not be terribly uscful in help

svstems, it should not be assumed that this result will transfer to other task domains.

As far as ACRONYM is concerned, thiere are several reasons to suspect that the effort spent on its
mechanisms was not wasted. Most important, the common perception of those who use it that itis a
good help system should not be discounted: these opinions are, in the end, all that really matters for a
system'’s acceptance. In this light, the most important conclusion of these experiments may be the
discovery that user’s perceptions of a system’s usefulness are not directly related to that system’s value
for enhancing users’ productivity. Additionally, it scems likely that ACRONYM's power actually
penalized it on occasion during the experiments reported here. By providing users with a constantly
updated menu of related help topics. ACRONYM encouraged them to digress from the task at hand
and indulge in exploratory learning. This may have inflated ACRONYM users’ scores, while any
resulting additional learning could not be mecasured in the cxperiment. Morcover, the detailed
analysis of the help systems’ performance showed a few specific outlying data points for which
ACRONYM did unusually badly. It seems likely that an ACRONYM Mark 1I, with improvements
suggested by this data and other observations. might perform significantly better on the same tests.
(A brief analysis of the data omitting ACRONYM’s outlying data points more than doubled the level
of significance with which ACRONYM could be said to be better than the hybrid system, but the

difference was still below any reasonable threshold of significance.)

The bottom linc, however, appears to be that while fancy features may make the users happy, the

CONCLUSIONS 113

most essential factor for getting the job done is almost certainly the quality of the help texts. 'Those
interested in improving the productivity of training programs should therefore concentrate their
resources on technical writing rather than elaborate help mechanisms, however flashy or impressive

the latter might be.

8.2. What Has Been Learned About Interface Design and Evaluation

Besides the specific information about help system, this thesis has produced a few more general

insights into how user interfaces can be designed and cvaluated.

8.2.1. The Use of Test-beds in User Interface Design

First of all, the very existence of this thesis is a powerful argument for the uscfulness of
sophisticated test-beds for interface design. [In this case, even though the test-bed, UNIX Emacs [44],
was not designed for such purposcs, it proved an invaluable tool. In particular, by providing screen,
process, and string handling facilitics at a very high Icvel, the system allowed ACRONYM to be built
quickly and without regard for many irrelevant details. Without such a tool, it is unlikely that a single
thesis could have included both the building of ACRONYM and the scries of evaluative experiments

reported here.

Emacs, however, is far from an ideal test-bed for such purposes. Because Mock Lisp is an
interpreted language, it imposes a noticeable performance penalty for computation-dependent
features. In ACRONYM’s case, this was compensated for by writing the crucial subroutines in C and
communicating via the IPC [86], but this mechanism imposes unnecessary low-level details on the
interface designer., in large part defeating the entire purpose of a having testbed environment. A true

compiler for the interpreted language would have been far preferable.

Mock Lisp also offers too meager a set of data types for serious programming; even for interface
design, a wider range of data types is desirable. ACRONYM itself implemented a stack in Mock Lisp
as a buffer in which each text line was an clement in the stack. Others have even implemented
rational numbers, but the effort involved was too large to be believed by anyone but an Mock Lisp

programmer {39].

More important, however, a good user interface test-bed would incorporate a number of high-level
features beyond the much-appreciated ones provided by Emacs. Such well-known interface

paradigms as menus and command grammars could be supported at a much higher level. This is

114 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

done in a few existing systems, most notably the COUSIN system [50, 52]. In dcsigning such
paradigms, it is important not to make the choices available to the interface designer “all-or-nothing”
decisions. That is, if the system provides a basic mechanism for menu interfaces, it should be possible
to implement a slightly different style of menu interaction without totally scrapping the form
provided. This implies that wherever possible the high level mechanisms should be implemented in
the same extension language commonly used by the interface designer, so that they can be most casily
modified. This is a common principle in the design of software extension languages, as noted by
Donner and Notkin [26].

UNIX Emacs as a test-bed for user interface design is discussed at greater length in [9].

8.2.2. Iterative Interface Development

Informal itcrative design methodologies are commonly practiced by successful designers of user
interfaces. Unfortunately, except in rare cases, such methodologics often cause designs to evolve
until they only faintly resemble their original design. This causes well-known problems of software
maintenance, as data and program structures are increasingly stretched in directions they were never

intended to go.

The methodology of this thesis offers an exciting prospect for avoiding such problems. By building
ACRONYM hastily within the framework of a general interface test-bed, the system was in a position
to evolve and be evaluated without concern for the integrity of its implementation. After formal and
informal evaluations, the system can be scrapped and totally rewritten, without much worry over the
cost of the initial version. Thus, the existence of the test-bed not only facilitates more extensive
evaluation of experimental systems, it also offers a valuable tool to the interface designer in the real

world.

A real world development tcam with such a test-bed at its disposal might begin with two teams of
programmers. One would immediately begin with a prototype system (or serics of prototypes) built
on the test-bed, while the other tcam began with the serious implementation of the lowest-level
programs in the final system. By the time the interface team’s design had cvolved to a relatively
stable state, the other team would be well-prepared to implement the already-tested interaction
paradigms. Just as modern programming mcthodology has established the desirability of the
separation of programs and data, and of data abstraction, similarly future interface test-beds may
finally establish the desirability of separating functionality from interface, and of abstracting the

details of the functional implementation.

CONCI.USIONS 115

8.3. Practitioner’s Summary: Advice for Builders of Future Help
Systems

The dominant finding of this thesis was that quality of help texts is far more important than the
methods by which those texts are accessed. Therefore, in designing an on-line help system with
limited development resources, it makes sense to devote the lion’s share of those resources to
producing texts of high quality, rather than to building fancy help features. Those features may well
be uscful and desirable, and may in fact be essential if the goal is a system in which a paper manual is

unnecessary, but they should not be implemented at the expense of high-quality texts.

The greatest problem affecting builders of help system in the past has been lack of knowledge of
what has alrecady been done. None of the techniques used in ACRONYM, for example, were new.
However, each has apparently been invented anew, in a vacuum, by each of its implementors, and no
one has studicd help systems enough before implementing them to become aware of the good work
that has come before. Thus, the most important advice for builders of future help systems is simply
to be aware, from the survey in this thesis and whatever material can be found elsewhere, of what
kinds of help systems have been built. This makes it more likely that anything you invent will
actually be new, and it also allows you to spend time choosing the most apprepriate of known

techniques rather than inventing new ones.

Additionally, it is essential to think of help information as a knowledge database, which is what it
really is, no matter how it is implemented. If the implementation reflects this conception, the
knowledge will be stored in a format that is readily accessible to multiple methods of help access.
This will not only simplify the task of building a multi-modal integrated help system, but it will make
it easier to extend whatever help system is built to include new access methods in the future. (Advice
like this sounds so painfully obvious that it must be repcated that this has simply never been done in

any real world help system!)

Finally, the experience of developing ACRONYM led to a strong belief in the great value of
iterative testing of interfaces such as help system. ACRONYM was built only after extensive user
surveys and protocols, and hence incorporated a wide varicty of techniques founded on a broad base
of knowledge about help system. Despite all of this, the experience of observing actual human beings
using ACRONYM was an enlightening one; many major and minor flaws and misfeaturcs became
apparent in this process, most of which are listed in Section 5.5. There is simply no substitute for

observing rcal users.

116 THLE DESIGN AND EVALUATION O ON-LINE HELP SYSTEEMS
8.4. Researcher’s Agenda: Topics for the Future

The evaluation methodology used in this thesis was very successful in detecting differences in the
utility of different help systems. However, many questions were left unanswered about which the
methodology could still shed much light. Various alternative help system designs could be tested,
and it would be particularly interesting to sce if a modified version of the hybrid
man/key/ACRONYM system which did not include a paper manual would perform significantly
morc poorly than ACRONYM or the hybrid version that included a paper manual. (The hypothesis

that it would do so was put forward in Section 7.3.)

Beyond this, the success of the help system cvaluation methodology, coming just a few years after
the success of the Roberts and Moran text editor evaluation methodology [8, 93, 94, 95]. should offer
new stimulation to those interested in developing broader objective measures of the quality of user
interfaces. Indced, the methodology used in this thesis was probably unnecessarily narrow in its
focus. An interesting direction for future research will be to try to broaden the orientation and scope
of the task list, so that the methodology can become a more general method for evaluating the basic

learnability of any operating system interface, including its help system.

Mecthodologies such as the one described in this thesis and the one described by Roberts and
Moran gencrally yield oaly crude measurcs, detecting very large differences such as “TECO is not as
good as BRAVO™ or “ACRONYM is better than the standard UNIX help system”. 'They are
inadequate for answering questions about the lower-level details of user interface design. To answer
these detailed questions, a whole host of unique experiments must be designed, in the tradition of
human factors experiments. Such research is well-established in other disciplines, but is almost virgin

territory for those who would evaluate user interfaces.

Finally, the results of the survey and taxonomy of help systems presented in this thesis lead
inevitably to the conclusion that there have been very few interesting ideas in the history of on-line
help systems. The same paradigms have been reinvented many times, and implemented in many and
varied (but usually deficient) particular systems, but the actual number of ways to give the user help
is still very small. This may be scen cither as a challenge to the creativity of software engineers, who
may yet come up with new methods, or as a phenomenon worthy of deeper understanding. Is there
some fundamental set of facts about the way people interact with computers that dictates the rather
small set of ways in which we have been able to make the computers help people to learn to use

them? Or have we not yet really opened our cyes to the possibilities before us?

CONCLUSIONS 117

Part Four

Appendices and Bibliography

118 THIE DESIGN AND EVALUATION O ON-1 INE HELP SYSTEMS

ANNOTATED EXPIRIMENTAL MATERIALS 119

Appendix A
Annotated Experimental Materials

'T'his appendix contains all of the materials actually used in the experiments described in this thesis.

The first part of this matcrial is an initial questionnaire, which was used to determine which, if any,
of the expertise classifications a subject belonged to. The next sections are the
introductory/explanatory material which each subject read, followed by a typing test which each
subject was required to perform. After these preliminaries come all of the actual materials presented

to novice subjects, and then the materials presented to expert subjects.

Conunents like this one, in italics off to the
right. are not part of the experimental materials
themselves, but are used to explain those materials.
They were not scen by the subjects. Other than
these comments, the only difference beiween the
materials presented here and those seen by the
subjects are differences of page numbering and
other minor formatting differences.

120 THE DESIGN AND EVALUATION OFF ON-LINE T P SYSTIEMS
Initial Questionnaire

What follows is a list of tasks that can be done on a computer. For cach task, plcase tell whether
you have ever performed that task on a computer, whether you have ever performed it on a computer
running the UNIX operating system, and whether you have ever performed it on a computer running
the TOPS-20 operating system. If you don’t understand the description of a task, you may ask the

experimenter for clarification.

For cach task, check “Any” if you have ever performed the task on any computer. Also check
“UNIX” if you have performed the task using UNIX and could do so again with minimal effort, and
check “TOPS-20" if you have performed the task using TOPS-20 and could do so again with minimal
effort. "Minimal effort” means simply that you would need no more than a brief reminder to jog

your memory.,

Any _UNIX _'TOPS20 Get alist of all the files in your current directory or account.
Any _UNIX _TOPS20 View the contents of a file stored on the disk.

_Any _UNIX _TOPS20 Make a second copy of a file on the disk.

Any _UNIX _TOPS20 Change the name of a file on the disk.

Any __UNIX _TOPS20 Get a copy of a file printed on paper.

Any _UNIX _TOPS20 Delete a file from the disk.

Any _UNIX _TOPS20 Get a list of all the files deleted from your current directory, but
still recoverable (not permanently deleted).

Any _UNIX _TOPS20 Restore (undelete) a deleted file.

Any _UNIX _TOPS20 Find out the name of your current directory or account.

Any _UNIX _TOPS20 Create a new directory as a subdirectory of your current one.
Any _UNIX _TOPS20 Change to another working directory.

Any _UNIX _TOPS20 Move a file from one directory to another.

ANNOTATED EXPERIMENTAL MATERIALS : 121

_Any
_Any
Any

Any

_Any

_Any

_Any

Any

Any
Any

Any

Any

_UNIX
_UNIX
_UNIX
_UNIX

UNIX

_UNIX

_UNIX

_UNIX

_UNIX
_UNIX

_UNIX

_UNIX

_1TOPS20
_TOPS20
_TOPS20
_TOPS20
_TOPS20

_TOPS20

_TOPS20

_TOPS20

_TOPS20
__TOPS20

_'TOPS20

_TOPS20

Delete an cpty directory

Delete a directory and all its contents.

chd mail to another computer user.

Read mail from another computer user.

Find out if a certain person is currently using the computer.

Copy a file from your machine fo another machine on the same
computer network.

Copy a file to your machinc from another machine on the same
computer network.

Find all occurrences of a certain word in a file on the disk, without
using a text cditor.

Find out what time it is.
Change your password.

Send a message to another user, making it appear immediately on
his screen.

List everyone currently using the computer.

122 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS
What You’ll Be Doing

In this experiment, you will be asked to perform certain tasks on a computer using the UNIX
opcrating system. Most of these tasks will probably be things you've never done before. For each
task, you will be given an explanation of what it is you are supposed to do, and then you will attempt
to learn how to do it. Please try as hard as you can, but don’t worry if you can’t {igure a few of the

tasks out.

Before we start, please take a few moments to familiarize yourself with the keyboard. Practice
typing a few things, to get used to typing on it. Don’t worry about anything the computer might say

in responsc to what you type to it.

One key that may be unfamiliar to you is the "Control” key ("Ctrl"). The control key is like the
shift key in that holding it down alters the meaning of the other keys on the keyboard. For example,
holding down “ctrl” and typing "h" is called "control-h" and can be used to erase the last character
you typed. There arc a few such control keys that are very useful in typing on the computer, and
these are listed below. If you've never used them before, please try them out and make sure you

understand what they do.

o control-h deletes the last character you typed. You can use it scveral times in a row to
delete several characters.

e control-u deletes the entire line vou have just typed, as long as you haven’t pressed the
RETURN Kkey.

e control-s stops the computer from printing output faster than you can read it. When you
type control-s, the computer will stop printing until you type control-q.

e control-c tells the computer to stop whatever it is doing. You can type control-c if you

give some command by mistake and just want the machine to quit what it is doing and
start over with a new command.

When you fecl comfortable typing on the computer keyboard, please turn the page.

ANNOTATED EXPERIMENTAL MATERIALS 123
Typing Test

The first part of the experiment is a typing test. Type “typing™ on the computer keyboard and then
press the RETURN key. When the computer says “Ready for typing test,”” please turn the page and
type the paragraph you sce there. If you make an crror and you notice it right away, correct it by
crasing with control-h. If you notice it after you’ve typed a few morc words, however, just ignore the

mistake and go on typing.

At the end of cach line of text in the typing test, please press the RETURN key, just as you would

on a typewriter.

124 THE DESIGN AND EVALUATION OF ON-LINE HEFP SYSTEMS

Type This Paragraph:

[lost the boundary of my physical body. I had my skin, of course, but
| felt | was standing in the center of the cosmos. [saw people coming
toward me, but all were the same man. All were myself. | had never
known this world before. [had believed that I was created, but now |
must change my opinion: | was never created. | was the cosmos; no
individual existed.

When you have finished, and are ready to go on, please turn the page and type the paragraph you see

there.

ANNOTATED EXPERIMENTAL MATERIALS 125

Type This Paragraph:

Dispute not. As you rest firmly on your own faith and opinion, allow
others also the equal liberty to stand by their own faiths and opinions.
By mere disputation you will never succeed in convincing another of his
error. When the grace of God descends on him, each one will
understand his own mistakes.

Please DO NOT turn the page until the experimenter says it is OK. Right now, the experimenter
will give you a separate page of instructions to read. While you are reading that page. the
experimenter will type a few commands on your keyboard in preparation for the next part of this
experiment.

The mentioned page of the instructions varied
according 1o the independent variable, which is the
type of help system being used. That page
explained the use of whichever heip system was
being made available to the subject in the first part
of the experiment. All of those pages are presented
in sequence on the pages that follow.

126 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS
Instructions for Using the Help Systems

For cach help system studied in the experiments, a short cxplanation of the use of the help system
was provided. Since the independent variable in the cxperiments was the help system, the
explanatory material was the only source of variation in the materials seen by the subjects. Before
cach of the two task sets, cach subject saw the explanatory material for one help system only, namely
the help system he would be using in the following task sct. All of those pages are presented together
here, but it should be remembered that this is not how the subjects saw them: what the subjects saw
was a single sct of instructions at this point, corresponding to the help system they used in the first

half of the experiment.

ANNOTATED EXPERIMENTAL MATIRIALS 127

Getting Help

Help condition H o Naked UNIX with man and
key or H,: Hybrid system with man and key using
ACRONYM database.

As stated before, you will be given a serics of tasks to try to perform on the computer. Since you
won’t generally know how to do these tasks in advance, you will have to learn the right way to do

them. To do this, you will need to use the UNIX help system.

‘The UNIX help system consists of two scparate help commands. The first is the man command. If,
for example, you arc trying to find out how to use a program called “build” you may type “man
build” t the computer. It will then print out a full description of the build command. If the
description is longer than will fit on your screen, it will print out one screen full and will then type *--
More --". It will then wait for you to press the space key before continuing with the description. If

TP

you don’t want it to finish the explanation, you can press the “q” key instcad of the space key. This

will cause it to stop giving you that help message.

The other help command available to you is called key. This command may be used when you
don’t know the name of the command you arc looking for. For example, if you wanted to construct
something, but you didn’'t know that the right command for doing this was called “build,” you
wouldn’t be able to use the man command to get help. Instead, you could type “key construct” to the
computer. The key command takes the word you give it (a keyword) and looks for commands that
might be relevant to that key word. Thus, if you typed “key construct” it might tell you about the
build command. Actually, you don’t even have to give "key" complete words; a piece of a word such

as "con" can often be more uscful than a complete word such as "construct.”

Key prints only short descriptions of commands; its purpose is to help you find the command
you're looking for. You can then get detailed information about it by using the man command, as
described above. Note: The key command will list a large number of manual entries which are not
actually commands. and should be ignored. Each entry will have a number in parenthesis after it
when listed by the key command. Only those entires with the number "(1)" are relevant to the tasks

you will be performing. Entries with any other number should be ignored.

In addition to the key and man commands, you will also be given a paper copy of the UNIX
manual. The entries in this manual correspond precisely to the explanations printed by the man

command. Thus it is cquivalent to type “man build” or to look up “build” in the paper manual.

128 THE DESIGN AND EVALUATION OF ON-LINEE HELP SYSTEMS

In addition to the paper manual, you will also have at your disposal a booklet titled "UNIX for
Beginners,” which you may use as an additional sourcc of information if you so desire. It is less
complete than the other information, but somcwhat easier to rcad and understand. for this
experiment, it is not recommended that you try to read that booklet in its entircty, but rather that you

scan through it in scarch of particular information as you need it.

The paper manual and the commands described above are the only sources of help you will have
for this experiment. You will not be allowed to ask the experimenter for help in performing the
tasks. However, you may ask the experimenter if you have any questions about how to use the help
commands or the paper manual. You may also ask the experimenter to clarity the descriptions of the

tasks if you don’t understand them.

If you have any questions at this time, please ask the experimenter.

ANNOTATED EXPERIMENTAL MATERTALS 129

Getting Help

Help condition H,: ACRON YM
As stated before, you will be given a scrics of tasks to try to perform on the computer. Since you
won’t generally know how to do these tasks in advance, you will have to learn the right way to do
them. To do this, you will usec the ACRONYM help system. ACRONYM is simply a system that

gives you help in using the computer in several ways.

You will notice that your screen is divided into five white arcas, scparated by dark lines. 'The top
such arca is not used by ACRONYM; this is the small white arca at the very top of the screen. You

should simply ignore this scction of the screen.

The second part of your screen is called the "Help Texts". In this area, ACRONYM will print
explanations of various sorts; this is where you will actually read the help that ACRONYM is giving

you.

The third part of your screen is called the "Help Menu". In this arca, you will find a list of topics

for which further help is available.

The fourth white arca, the last large white area on your screen, is called the "Commands Window".
In this area of the screen you will actually type commands to the computer and the computer will

respond to you.

Finally, there is a verv small white area -- just one line -- at the bottom of your screen.
ACRONYM will occasionally use this to give you short messages and to allow you to ask certain

questions, as described below.

Now, before you read any further, please make sure that you recognize each of the parts of the

screen described above.
How to get Help

ACRONYM gives you help in four different ways. The first, and simplest, is that it simply watches
what you type and updates the help in the Help Texts accordingly. At any given moment, therefore,

the help in the Help Texts should be at least somewhat relevant to what you are currently doing.

Sometimes you can make ACRONYM give you more help based on what you're currently doing

by typing a question mark ("?"). The question mark can also be used to return to ACRONYM's best

130 THE DESIGN AND EVALUATION OF' ON-LINE THEL P SYSTEMS

guess about what kind of help you nced. if you have caused the help to be changed by giving any of
the further help commands described below. Often, however, you will find that a question mark
doesn’t cause the help to change at all; in such a case, you'll need to use one of the two remaining

methods of getting help.

(NOTE: Somectimes you need to type a question mark as part of a command, rather than as a
request for help. On these rare occasions, you can actually cause a question mark to be inserted like

any other character you type by preceding it with either 1Q (control-q) or a back-slash ("\").)

The most common way of requesting more help from ACRONYM is to choose one of the items in
the Help Menu. If you want to sce the help described on a line in the Help Menu, you should simply
use the "mousc” to point to it. The "mousc™ is the little box-shaped object near your keyboard. You
will notice that as you move the mousc around on the plastic shect, an arrow will move around on the
screen. Try it and sce. You can use the mouse to position the arrow so that it is pointing at the menu
item that interests you. Then, if you press any button on the mouse, ACRONYM will show you the
help messages on the topic you pointed to. You should especially note that the help menu for every
comimand includes an "examples” scction, a “summary" scction, and more detailed sections to

explain various points and concepts.

The mouse you are using, incidentally, is a little picky about where exactly the arrow is pointing.
You should make sure that the body of the arrow is mostly BELOW the line you are pointing at; the

arrowhead should be pointing at the bottom of the line you are pointing at, not the middle or top.

Often, the message in the Help Texts or the choices in the Help Menu are too long to fit in the
appropriate region of your screen. In such a case, a special phrase will appcar in the line below that
region, saying "Press HERE to scroll forward” or "Press HERE to scroll backward”. By pointing at
the word "HERE" with the mouse, and pressing a mouse button, you can cause the part of the Help
Texts or Help Menu that is not now visible to be moved onto the screen. [t is important to notice
when the "Press HERE to scroll..." messages appear, because if you don’t notice you may never see

the help messages you need most.

Finally, if none of the help on the screen scems to be doing you any good, just type the word
"help” and press the SPACE key. ACRONYM will ask you to type a key word about which you
want help. (It will ask you for this key word in the message area, the small white area at the very
bottom of the screen.) Thus. if you type "help” and press SPACE. you can then type the word
"cherry” to get ACRONYM to give you whatever help it can find related to the word "cherry”. [t

won't always succeed in finding the help you want, but it often will.

ANNOTATED EXPERIMENTAL MATERIALS 131

Plcase experiment with the commands above and try to make sure you understand how they work.

If you have any questions at this time, please ask the experimenter.

132 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

Getting Help

Help condition H ¥ Human Tutor
As stated before, you will be given a scries of tasks to try to perform on the computer. Since you
won't generally know how to do thesc tasks in advance, you will have to learn the right way to do
them. To do this, you can ask the experimenter any questions you want. He will answer whatever

questions you ask, so all you have to do is figure out the right questions to ask him.

The experimenter is the only source of help you will have for this experiment. You will not be

given an instruction manual, and the normal UNIX help facilities will not be available to you.

If you have any questions at this time, please ask the experimenter.

ANNOTATED EXPERIMENTATL MATERIALS 133

Getting Help

Help condition H P Simulated English
As stated before, you will be given a serics of tasks to perform on the computer. Since you won't
generally know how to do these tasks in advance, you will have to Iearn the right way to do them. To

do this, you can ask the computer any question you want, in English.

This computer is running a new English-language help system. You can’t actually give the
computer commands in English; all of its commands arc in a strict command language, which must
be conformed to cxactly. However, your questions abour that command language may be typed in

normal, everyday English.

The computer will be the only source of help you will have for this experiment. You will not be

given an instruction manual, and the normal UNIX help facilities will not be available to you.

If you have any questions at this time, please ask the experimenter.

134 THE DESIGN AND EVALUATION O ON-LINE HIET P SYSTEMS
The Experimental Tasks for Novices

On the pages that follow are the actual tasks as they were given to the novice subjects. Only one

task is given on each page, to prevent the subjects from reading ahead.

ANNOTATED EXPERIMENTAL MATERIALS 135

Task:

Task N r date, uptime, whenis

Get the computer to tell you the correct time of day.

Note that this is deliberately worded to distract
the subject away from the correct guess. Had the
subject been asked 1o get the computer o print out
the date and time, " date” might be a common guess.
However, geiting the computer i lell the time is a
more likely desire, and is more likely to require
help, since the correct command for obtaining the
time is “date.”

136 THE DESIGN AND EVAL UATION OF ON-LINE HELP SYSTEMS

Task:

Task N passwd

Everyone who uses the computer has a secret password which he uses at the beginning of each
session with the computer, in order to prove his identity to the computer. You haven’t needed to
provide this password because the experimenter took care of that before you began. However, your

task now is to change that password.

The password before now was “dinner”. Your task is to change the password to “breakfast”.

ANNOTATED EXPERIMENTAL MATERIALS 137

Task:

Task N ¥ Is

A computer file is an organized unit of information, such as a manuscript. The computer you are
using has thousands of files. To make it easicr to find things, and for other reasons, these files are
arranged into groups called “directories”. At any given moment, you are dircctly connected to one of

these directories, and you may refer to the files in that directory simply by their names.

Your task is to get the computer to list the files in your current directory.

138 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Task:

Task N 4 cat, pr, more

One of the files in your current directory, you may have noticed, is a file named “readme”. Your

task is to rcad that file -- that is, to view its contents on your screen.

ANNOTATED EXPERIMENTAL MATERIALS 139

Task:

Task N scp

Sometimes it is desirable to have two copies of the same file. Your task now is to make a second

copy of the file called “readme™ and to name that second copy “readme2”.

140 THI: DESIGN AND EVALUATION OIF ON-LINE HELP SYSTEMS

Task:

Task N 6 my

File names can be changed. Often it becomes clear that a file was not given a very good name in
the first place, and it nceds to be renamed. Your task now is to change the name of the file

“readme2” to “copyofreadme”. Do this without making a new copy of the file.

ANNOTATED FXPERIMENTAL MATERIALS 141

Task:

Task N s ez

Your task now is to create a paper copy of the file “readme” that you looked at before. The device
that is used in our department to get paper copies of files is called the Dover. Thus, your task is to

print the file “readme” on the Dovcr.

142 THE DESIGN AND EVALUATION OF ON-LINLE HELP SYSTEMS

Task:

Task N N del

Since we don’t really need the file “copyofreadme”, your next task is to get rid of it. However, our
version of UNIX has two different commands that can be used to get rid of unwanted files. One of
these commands, "rm," gets rid of files permanently, while the other allows you to change your mind
later and “undclete™ them again. Your task is to get rid of “copyofreadme”. but in such a way that
we can get it back again later if we so desire. In other words, don’t use "rm" -- use the other file

deletion command.

ANNOTATED EXPERIMENTAL MATERIALS 143

Task:

Task N v Isd

Just as you earlier got a list of the files in your current directory, your new task is to get a listof the

files that have been delered from your current directory.

144 THE DESIGN AND EVALUATION OIF ON-LINE HELP SYSTIEMS
Task:

Task N w0 undel

Restore the file that you deleted before, “copyofreadme”, back into your current directory.

ANNOTATED EXPERIMENTAL MATERIALS 145
Task:

Task N " send, write, rsend

As it turns out, the person called nsb is currently using this computer in another location. Your
task is to get the computer to print a message on his screen that says “Dinner is served.” Note that
you don’t want to start a conversation with him, but merely to print that single message on his

terminal.

146 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

New Instructions

In the next part of the experiment, you will be given more tasks to perform on the computer.
However, now the method in which you get help from the computer will change. Instead of getting
help as you have so far, you will have to use a different method. The new method of getting help is
described in a new sct of instructions which the experimenter will now give to you. While you are

rcading the new instructions, the experimenter will type a few commands on your keyboard.

At this point in the experiment, the
experimenter has (o type something to turn the old
help system off and to turn the new one on. At this
point in the experimental materials, another one of
the help system explanations, which were presented
as a group earlier in this chapter, would be seen by
each subject. This new explanation, of course,
corresponded 1o the help system the subject used in
the second half of the experiment.

ANNOTATED EXPERIMENTAL MATERIALS 147

Task:

Task N, cal

Your task is to get the computer to print on your screen a calendar for the month of August, 1984.

148 THE DESIGN AND IFVALUATION OFF ON-LINE HET P SYSTEMS
Task:

Task N 13 1€V

Once again your task is to print the file “readme” on your screen, but this time you should print the

entire file backwards -- that is, printing each line in reverse order.

ANNOTATED EXPERIMENTAL MATERIALS 149

Task:

Task N " pwd

As we have said before, you are always “connected” to some particular directory which contains
your files. Until now, we haven’t paid any attention to the directory name, and have only dealt with
files in your current directory. In order to learn more about directories, you need first to find out the
nanie of the directory you are currently working with. Thus your task is o find out the name of your

current directory.

150 THE DESIGN AND EVALUATION O ON-HINE THELP SYSTEMS
Task:

Task N Ist mkdir

Your next task is to create a new dircctory within your current directory. The new directory should
be called “newdir”. Note that a directory is just a special kind of file, and will look just like a file if

you get a list of the files in your directory with the "Is” command.

ANNOTATED EXPERIMENTAL MATERIALS 151

Task:

Task N 16 cd, chdir

Your current directory has a subdirectory called “urgent”. Your task now is to change your current

directory to be that “urgent” subdirectory, instead of what it is now.

152 THE DESIGN AND EVALUATION OFF ON-LINE HETP SYSTEMS

Task:

Task N 7 my

Now that you have made “urgent” your current directory, you will find that it has a file named
“frank” and a subdircctory named “beans”. Without copying the file, move the file “frank™ out of

your current directory and into the “beans’™ subdirectory.

ANNOTATED EXPERIMENTAL MATERIALS 153

Task:

Task N 5 rmdir

Your current directory has another subdirectory called “empty”. This directory is, as its name

implies, empty -- there are no files in it. Your task is to delete that empty directory.

154 THE DESIGN AND FVAL UATION OFF ON-LINE HETP SYSTEMS
Task:

Tuask N 1o° LT

Your current directory has yet ancther subdirectory called “full”. This directory has several files in

it. Your task is to delete the directory and all its files with a single command.

ANNOTATED FXPERIMENTAL MATERIALS 155

Task:

Task N, u, users, finger, w, who

Your task now is to get a list of all the pcople currently using this computer.

156 TUE DESIGN AND EVALUATION OF ON-LINEHEL P SYSTEMS

Task:

Task N,,: grep

There is a file in your current directory named “searchme”. It is a very long file, too long to read
quickly in its entirety. Your task is to get the computer to search through the file and only print out

those lines that contain the word “chocolate”.

ANNOTATED EXPERIMENTAL MATERIALS 157

Task:

Task N 2 mail

Flectronic mail is a convenient way for two computer users to send messages to onc another. There
is a user of this machine who is known to the computer as “nsb”. Your task is to send a picce of mail

to nsb.

[}

The subject of your mail should be “Good News.” The actual message should simply state, “Keep

working, you'll get done eventually.”

158 THE DESIGN AND EVALUA TION OF ON-LINE IELP SYSTIMS
The Experimental Tasks for Experts

On the pages that follow are the actual tasks as they were given to the expert subjects. Only one

task is given on cach page, to prevent the subjects from reading ahead.

ANNOTATED EXPERIMENTAL MATERIALS 159

Task:

Task I cz+f

Print the file sample.c on the Dover, using TimesRoman12 as the font.

160 THE DESIGN AND EVALUATION OF ON-TINEHELP SYSTEMS

Task:

Task I ¥ sort-r

There is a file in your current directory called "unsorted”. Sort that file alphabetically by line in
reverse alphabetical order, using a single command to sort the text and print the sorted output on our

screen.

ANNOTATED EXPERIMENTAL MATERIALS 161

Task:

Task I ¥ Is-t

Get a list of all files in your current directory, sorted by time modified rather than by file name.

162 THE DESIGN AND EVALUATION OF ON-LINE HET P SYSTEMS
fask:

Task I/ ¢ chmod o-r, chmod 640

In your current directory is a file called "shared”. Currently it is readable by anyone, but writable
only by you. Change its protection status so that only you or members of your login groups can rcad

it.

ANNOTATED EXPERIMENTAL MATERIALS 163

Task:

Task 11'5.' del

First, change to the directory "rodeco"” by typing "cd rodeo”.

This version of UNIX has two commands that can be used to get rid of unwanted files. You are
probably alrcady familiar with one of these, rm. The other command, however, gets rid of files
without erasing them, so that it is possible to restore them if they were deleted by mistake. Your task
now is to delete the file "useless” from your current directory, but to do it in such a way that it can

later be restored if nccessary.

164 THE DESIGN AND EVALUATION OF ON-LINE HEEP SYSTEMS

Task:

Task 1'..'6.' Isd

Get a list of all the files that have been deleted from vour current directory but can still be restored.

ANNOTATED EXPERIMENTAL MATERIALS 165

Task:

Task 11'7’ undel

Restore to your current directory the file "useless™ that you deleted a short time ago.

166 FHE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Task:

Task 12'8.' Is-i

First, type "cd .." to change your back to the parent of your current directory.

There is a file in your new current directory called "whatnumber”. Find out what the i-number of

that file is.

ANNOTATED PXPERIMENTAL MATERIALS 167

Task:

Task [:'9: chmod u+s, chmod 4xxx

There is a file in your current directory called "runme”. It is an executable (runnable) file. Your
task now is to change its protection status so that when it runs, whoever runs it has the privileges of its

owner during its execution. 'This is known as "sctting the setuid bit".

168 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS
lask:

Task I send -all, send nsb ttyxx

Send the message "Time for dinner” to the terminal of nsb. who is currently using this machine.
nsb was always logged on twice, causing the
program to complain and require special
INSLrUCLions.

ANNOTATED EXPERIMENTAL MATERIALS 169
Task:

Task I, psa

Your next task is to get a list of all processes currently running on the system, for all users (not just

yOUur processes).

170 THE DESIGN AND EVAT UATION OF ON-LINE HELP SYSTEMS

New Instructions

In the next part of the experiment, you will be given more tasks to perform on the computer.
However, now the method in which you get help from the computer will change. Instcad of getting
help as you have so far, you will have to usc a different method. The new method of getting help is
described in a new sct of instructions which the experimenter will now give to you. While you are

reading the new instructions, the experimenter will type a few commands on your keyboard.

At this point the experimenter had lo lype
something to turn the old help system off and to
turn the new one on. This page in the experimental
materials was followed by the description of the help
system the subject was to use in the sccond half of
the experiment; all such pages were reproduced
earlier in this appendix.

ANNOTATED EXPERIMENTAL MATERIALS 171

Task:

Task [212" cz-h*..

In your current dircctory is a file called "niceday”. Please print that file on the dover with the

phrase "Have a nice day™ at the top of cach page.

172 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Task:

Task E | : sort-f

Your next task is to sort the file "sortme" alphabetically by line, ignoring capitalization.

ANNOTATED EXPERIMENTAL MATERIALS 173

Task:

Task E: mailq -retain

Cancel all of your pending (queued) requests to send mail to other machines on the network.

(Even if there aren’t any pending requests, type the command that would cancel them if there were.)

174 THE DESIGN AND EVALUATION O’ ON-LINE HELP SYSTEMS

Task:

Task I |57 Strings

There is a press file (binary Dover format file) in your current directory called "out.press”. Press
files arc full of control characters, which are unreadable, as well as the actual text they arc supposed
to print. Your task now is to view on your screen the readable (text) characters in that file (out.press),

without printing the control characters, which could mess up your terminal.

ANNOTATED EXPERIMENTAL MATERIALS 175

Task I cmufiprg-= “ldate”

Another machine connected to this one on the network is CMU-CS-G. It is possible for you,
logged in on one machine, to execute comnands on other such machines on the network. Your task
now is to get CMU-CS-G to tell you the date and time. Then ask your current machine to tell you
the date and time: they rarely agree. (Hint: Use the program "cmuftp”.)

A common error in giving this conmmand
actually causes the current machine to print the
date and time. Thus, the request for comparison is
actually an opportunity for the subject 1o discover
his error. This task is not quite satisfactory: what I
want is a simple command to be executed on a
remote site via the fip/cmuflp mechanism.
However, simple directory listings and listings of
users aren’t acceplable, because these may now be
done without touching fip or cmufip. finger@g or
Is "[g]/usr/foo" will do those jobs withou! the
subject having to learn how to use fip for remote
processes. I may replace the "date and time" task
with something else if 1 come up with any better
ideas.

176 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

Task:

Task F 7 undel -g

There is a directory in your current directory called "dir2". If you change to that directory ("cd
dir2") and type "Isd", you will find that there are four old deleted versions of a file called "deleteme”
that are still recoverable. Your task now is to undelete the oldest version (original) version of that file,

lcaving the newer versions deleted. (Nute that the oldest file has the lowest gencration number.)

ANNOTATED EXPERIMENTAL MATERIALS 177

Task:

Task E ¢ ep cu guest guesl
"fonyxJ< AltoDocs>chat.tty” chat.tty

One machine on the Ethernet is called "onyx™. On that machine is a file called {AltoDocs>chat.tty.
Your task is to copy that file from Onyx onto your current directory. You can use the account
"guest” with password "guest”. Warning: Neither "ftp” nor "cmuftp” will work for transfers to and

from Onyx.

178 THE DESIGN AND EVAI UATION OFF ON-LINE HELP SYSTIEMS

Task:

Task IY o rsend user@host, send user@host

The user nsb is also logged in on the machine CMU-CS-K. Send a message to his terminal on that

(Ll

machine that says "“Time for lunch”.

ANNOTATED EXPERIMENTAL MATERIALS 179

Task:

Task 2’ P tpa

Get a list of all processes that are currently running on the terminal "ttypa”. Use a single command

to do this.

180 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Task:

Task E,,: ps ip?

Get a list of all processes that are currently running on this machine but are not associated with

ANY terminal.

ANNOTATED EXPERIMENTAL MATERIALS 181

Task:

Task E2 N Isd -t

Find out how much total disk space your deleted files in this directory are taking up. Do this with

the "1sd" command.

182 THE DESIGN AND EVALUATION OF ON-LINE HEL P SYSTEMS
Discussion and Posttest

After the experimental tasks were all complceted, subjects were debricfed and were given a posttest

to analyze their short-term retention. 'The associated materials appear on the following pages.

ANNOTATED EXPERIMENTAL MATERIALS 183
Discussion

At this point, the experimenter would like to tatk to you about what you have done in this
experiment. When he is done talking to you, there will be one final short quiz about what you have

learned.

The “debriefing” session was a fruitful source of
anecdotal information and general insights into the
subjects’ joys and frustrations involved in the use of
the help system.

184 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

UNiX Learning: Posttest

Novice version
What follows is a list of tasks, similar to those you performed or attempted to perform during the
experiment. Next to cach task, please write down the command that should be used to perform the

task, if you remember it.

List the names of the files in your current directory.

Print the contents a file on your screen.

Mike a copy of a file.

Rename a file.

Print a file on paper on the Dover printer.

Send mail.

Delete a file.

Get a list of your deleted files.

Restore a deleted file

Print the name of your current directory.

Create a new directory.

Change your current directory.

Move a file from one directory to another.

Delete an empty directory.

Delete a non-empty directory and all its contents.

Get a list of everyone currently using your computer.

Display only those lines in a large file which contain a certain word.

Send a message to the screen of someone else who is currently
using the computer.

Print today’s date and time.

ANNOTATED EXPERIMENTAL MATERIALS 185

Change your password.

Print the calendar for a certain month.

Print a file backwards on your screen.

186 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

UNIX Learning: Posttest

Fxpert Version
What follows is a list of tasks, similar to those you performed or attempted to perform during the
experiment. Next to cach task, please write down the command that should be used to perform the

task, if you remember it.

Print a file on the Dover with ¢very page labeled with a certain
phrase at the top.

Print a file on the Dover using a special font.

Sort a text file alphabetically by line, ignoring capitalization.

Sort a file in reverse alphabetical order.

Copy a file from the machine called Onyx.

Find out the i-number of a file.

List all files in your current directory, sorted by time modified.

Cancel all outgoing mail requests.

View only the readable characters in a press file.

Reversibly delete a file.

Get a list of deleted files.

Restore a deleted file.

Restore the oldest of several versions of a deleted file.

Make a file writable by all members of your groups.

Make an exccutable file set the sctuid bit when it runs.

Send a message to the terminal of somcone who is logged in at
more than once terminal.

ANNOTATED EXPERIMENTAL MATERIALS 187

Send a message to the terminal of somcone who is logged in on
another machine.

List all the processes currently running for all users.

1.ist all the processes currently running on a particular terminal.

List all the processes currently running on no terminal.

Exccute a command on another machine on the network.

Find the total amount of disk space occupied by your deleted files.

188 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

WHAT ACRONYM LOOKED LIKE TO THE USER 189

Appendix B
What ACRONYM Looked Like to the User

Without using a piece of software, it is generally difficult to obtain an accurate picture of how that
software actually works. Since the degree to which the results of this thesis arc interesting depends, in
significant measure, on what you think of ACRONYM as a help system, it is especially important, for

the understanding of this thesis, to have a good grasp of what ACRONYM was like.

To help readers who have never been able to see ACRONYM in action, this appendix shows how
ACRONYM actually looked in use via a series of “snapshot” screens. These screens reproduce
actual ACRONYM screens as faithfully as possible. Unfortunately, they do not capture the location
of the cursor or the pointer controlled by the mouse, so these will be described in running text under
cach screen picture. Also. the “mode lines™ which separate ACRONYM's windows were reverse
video (white on black) in ACRONYM, but are here simply shown as ordinary text surrounded by
lines. Finally, the rather clumsy technology used to produce these screen images provided an
undesired excess of white space at the bottom of each window; in actual use, cach ACRONYM

window, when full, contained text right up to the mode line.

The first screen picture shows the ACRONYM screen as users saw it at the beginning of the

experiments; this is what ACRONYM looks like when it starts.

Those not familiar with UNIX should be aware that the dollar sign in the command window is the

standard UNIX prompt, signalling UNIX’s readiness for a new command.

190

THE DESIGN AND EVAT UATION OF ON-LINE HELP SYSTEMS

Welcome to AURONYM If you don't want to be here, press DEL to exit.

In addition to normal typewriter-style keys. your computer has a pointing
device known as a “mouse.” You can move this device around, causing the arrow
on your screen to move around and point at different parts of the screen.

In this system. you can use the mouse to get help in several ways

To begin with. you will notice that the highlighted line underneath the text
you are now rcading says "PRESS HERE to move torward.” If you use the

mouse to point the arrow at the word "HERE", and then press any button on
the mouse. you will find that the text in this window is scrolled forward --
that is. the beginning of the text will disappear. and new text will appear
at the end of the window. T¥ry it and see.

If you can't seem to get the window to scroll forward. this probably means
that you are pointing the arrow a iittle too high. Note that it is the
arrow head. not its body. that should be pointing at the word "HERE™.

In general. whenever this window or the one below it has more text than is

-~ Help texts -- PRESS HERE tu move forward.

** How to use the ACKONYM help system

** at: Etxecute a Shell script at a specified time

** bb: pirint notices from bulletin board(s)

** haff: be notified if mail arrives and who it is from

** cal: display calendar

** calendar: reminder calendar

** cat: display a text file

** cc: C compiler

** ccat: Print compressed files in uncompressed format

** ¢d or chdir: Change to another working directory

** chmod: Change the access mode of a file

** chat: Communicate with (log in to) another machine on the Ethernet
** ck: check if pew mail has arrived

** ¢mp: Compare two files to see if they differ

*+ cmuftp: transfer files to and from other machines on the Ethernet
** col: filter reverse line feceds

** comm: Compare two files and print matching and non-matching lines
** compact: compress files to save space

** cp: Copy file

** cz: convert files to press format and print them on the Dover

-- Help menus -- PRESS HERt to move forward.

Press 7' for context-dependent heip., DEL to exit. Press HERE for basic help.

This is ACRONYM’s initial screen, which is what the user sces when ACRONYM first starts up.
This is also what subjects in the experiments saw when they first started using ACRONYM.

In the example that follows, imagine a user who is trying to scan through a large file looking for

occurrences of a single word. He does nor know about the “grep™ utility; this is what he needs to

learn from ACRONYM.

WHAT ACRONYM LOOKED LIKE TO THE USER 191

Welcome to ACRONYM. It you don't want to be here. press DFEL to exit.

In addition to normal typewriter-style keys, your computer has a pointing
device known as & "mouse." You can move this device around, causing the arrow
o your screen tc move around and point at different parts of the screen.

In this system. you can use the mouse to get help in several ways

To begin with, you will notice that the highlighted line underneath the text
you are now reading says "PRESS HERE to move forward." If you use the

mouse to point the arrow at the word "HERE". and then press any button on
the mouse, you will find that the text in this window is scrolled forward --
that is. the beginning of the text w311 disappear. and new text will appear
at the end of the window. Try it and see.

If you can't seem to get the window to scroll forward, this probably means
that you are pointing the arrow a iittle too high Note that it is the
arrow head, not 1ts body., that should be pointing at the word “HERE".

In general. whepnever this window or the one below it has more text than is
currently visible. the line at the bottom of the window will offer you a

-- Heldp texts -- PRESS HERE to move forward.
** How to use the ACRONYM help system
** at: Execute a Shell script at a specified time
** bhb: print notices from bulletin board(s)
** hiff: be notitied if mail arrives and who it is from
** cal: display calendar
** calendar: reminder calendar
** cat: display a text file
** cc: C compiler
** ccat: Print compressed files in uncompressed format
** ¢d or chdir: Change to another working directory
chmod: Change the access mode of a file
** chat: Communicate with (log in to) another machine on the Ethernet
** ck: check if new mail has arrived
** cmp: Compare two files to sce if they differ
** cmuftp: Iranster files to and from other machines on the Ethernet
** ¢ol: filter reverse line feeds
** comm: Compare two files and print matching and non-matching lines
** compact: compress files to save space
** cp: Copy file
*+ ¢z: convert files to press format and print them on the Dover

-- Help menus -- PRESS HiRE to move forward

$ help

Press "7 for context-dependent help., DEL to exit. Press HERE for basic help.

Type a key word for which you want help: word

Here the user types “help™ to request key word help. ACRONYM. on the very bottom line of the
screen, asks him to provide type a key word about which he desires help. The user then types

“word™.

192

THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Select the appropriate menu item to find out about the command tisted,
which matched the key word “word’

-- Help texts --

e
e
.
e

v

Go back to the previous help menu (root)

grep/egrep/fgrep: Search for a pattern in a file.

egrup: Fast search for a pattern in a file

fgrep: Fast scarch for a string (word) in a file

wc: Display the number of lines. words, and characters in a file.

-- Help menus --

Press 7. for context-dependent helip. DEL to exit. Press HERE tor basic _help.

ACRONYM responds quickly to all help requests. In this case, the key word “word™ is ambiguous,

in that it matches several help topics. ACRONYM notes the ambiguity in the top window, and

provides a menu of choices in the middle window. The user points at the “grep™ menu item with a

mouse to find out more about the grep family of commands. Note that the word “help” which the

user had typed in the third (commands) window has been crased automatically by ACRONYM.

WHAT ACRONYM LOOKED LIKE TO THE USER 193

grep: Search for a pattern in a file.

tarmat: grep [options] pattern [file-list]

Ooptions: -¢ (count) display number of lines only

-¢ (expression) pattern can begin with hyphen

-1 (list) display filepames only

-n (number) display line numbers

-5 (status) return exit status only

-v (reverse) reverse sense of test

-i (ignore casc) consider upper and lower case equivalent
Arguments: pattern : a regular expression, can be a simple string

~- Help texts --
*% o back to the previous help menu (word)
** Synmary of the grep command
** gptions for the grep command
*+ Arguments tor the grep command
*» Additional notes on the grep cummand
** txamples of the grep command
** What is a tile?
** What is a string?
** What is a regular expression?
*+ egrep: Fast search for a pattern in a file
** fgrep: fast search for a string (word) in a file

-- Help menus -~

Press 7 for context-dependent help, DEL to exit. Press HERE for basic help.

ACRONYM's response to the sclection of the “grep” menu item is to update the screen with help
about the grep utility. The “basic™ help, a brief summary of syntax and options, appears in the top
window, while a menu of help messages with further details or dealing with related topics appears in
the middle window. In this hypothetical case, in which the user has ncver used the grep utility
before, the basic help does not suffice. Here the user points the mouse at the menu item “Summary

of the grep command” for further information.

194 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

[
grep scarches one or more files, Tine by line. for a pattern. f{he pattern
can be a simple string. or another form of a regular expression. grep takes
various actions. specified by options. each time it finds a line that
contains a match for the pattern.

grep takes its input from files specified on the command 1ine or from the
standard input.

-- Help texts --
Go back to the previous help menu (grep)
+* grep/egrep/fgrep: Search for a pattern in a file.
** Options for the grep command
** Arguments for the grep command
** Additional nctes on the grep command
** txamples of the grep command
** What is a string?

e

~-- Help menus --

Press 7 for contoxt-dependent help ODEL to exit. Press HERE for basic helip.

Here we see the summary information on the grep command, obtained by the previous menu
selection of the “Summary of the grep command” menu item. Note that many of the items now in
the menu window were also in the menu in the previous two pictures; the help frames for an
individual command usually all point at each other. In this case, the user is still uncertain and uses

the mousc to select “Examples of the grep command.”

WIHAT ACRONYM LOOKED LIKL TO THE USER

195

The tollowing examples assume that the working directory contains 3 files:
"testa®, “"testb”. and “"testc”. The contents of each file is shown below.

testa testb
aaabb 3jaaaa
bbbcc vbbbb
ff-ff cecece
cccdd ddddd
dddaa

grep can search for a pattern that is a simple
cach line containing bb.

$ grep bb testa

aaabb

bbbecc
$

The -v option reverses the sense of the test

following command line searches “testa” for the string "bb".

testc
AAAAA
BBBBB
ccece
nDDDOD

string of characters. The
grep displays

The cxample below displays

-- Help texts --

PRESS HtRE to move forward,

** Go back to the previous help menu (grep-s
** grep/egrep/fgrep:
** Symmary of the grep command

** Arguments for the grep command

** Agditional notes on the grep command
** Options for the grep command

Search for a pattern in a file.

~- Help menus --

Press '?' for context-dependent help

Dl _to exit.

Press HERE for basic help.

Here ACRONYM has updated the screen in response to the user’s selection of the “Examples”

menu item. Note that the examples, in this case. do not entirely fit in the “Help texts” window.

Therefore the mode line at the bottom of this window says “Press HERE to move forward.” In order

to see more of the examples, the user points at the word HERE with the mouse to scroll the help texts

forward.

196 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

The -v option reverses the sense of the test. The ecxample below displays
all the lines WITHOUT bb.

$ grep -v bb testa
ff-ff
ccedd
dddaa
$

The -n flag displays the 1ine number of each displayed line.

$ grep -n bb testa
1:aaabb
2:bbbcc
$

grep can search through more than one file. Below, grep searches through
each file in the working directory. (The ambiguous file reference * matches
all filenames.) The name of the file containing the string precedes each

Pitss HERE to move backward. -- Help texts -=- PRESS HERF to move forward.
** Go back to the previous help menu (root)

*» grep/egrep/fgrep: Search for a pattern in a file.

** Summary of the grep command

** Arguments for the yrep command

** Additicaal notes on the grep command

** QOptions for the grep command

--_Help menus --

Press 7. for context-dependent help DEL to exit. Press HERE for basic help

Here the top window has been scrolled forward to show more of the examples. Note that the mode
line for that window now offers the user the chance to scroll it either forward, to see still more of the
examples, or backward, to see what he had been looking at previously (the beginning of the
examples). In this case, the user has at last decided that he understands enough to try actually using

the grep command.

WHAT ACRONYM LOOKED LIKE TO THE USER 197

gren: Search for a pattern in a file

Format: grep [options] pattecn [fite-1ist]

Optiuns: -¢ (count) dispiay number of lines only

-¢ (vxpression) pattern can begin with hyphen

-~ (1ist) display tilenames only

-n (number) display line numbers

-s (status) return exit status only

-v (reverse) reverse sense of test

-1 (ignore case) consider upper and lower case eguivalent
Arguments: pattern : a regular expression, can be a simple string

-- Help texts --

** Summary of the grep command

** Options for the grep cammand

** Arguments for the grep command

«+ Additional notes on the grep command

** fxamples of the grep command

** What is a file?

** What is a string?

*+ What is a regular expression?

** egrep: Fast search for a pattern in a file

** fgrep: Fast search for a string (word) in a file

-~ Help menus --

$ grep

Press 7 for context-dependent help, DEL to exit. Press HERE for basic help.

Here the user has bravely typed “grep” and pressed the SPACE bar. Although the uscr has not yet
typed a complete command, ACRONYM knows that spaces delimit the various parts of UNIX
commands. It therefore parses (interprets) the partial command line -- in this case, simply “grep” --
and updates its help accordingly. In this case, that update yields simply the original basic help

regarding the “grep” command.

198

TIHE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

You may now type one or more filc nemes in which to search. 1f you don’t
type any file names, the standarg fnput will be searched. When you have
typed all the file names you wani to search. press the RETURN key.

~-- Help texts --
*¥ You may type any tite name now, 1ncluding any aof the following:
filel file2
filed - filedummy

** grep/egrep/fgrep: Search for a pattern in a file.
** Symmary of the grep command

*+ (Options for the grep command

** Arguments for the grep command

«* Additional notes on the grep command

*+ pxamples of the grep command

** What is a file?

**+ What is a string?

** What is a regular expression?

*+ What the RETURN key is and what it means

-~ Help menus -- PRESS HERE to move forward.

$ grep chocolate file?

Press -7 for context-dependent help, DEIL to exit. Prass HERE for bhasic help.

Here the user has typed more of the grep command. He has typed “chocolate”, the word he is

jooking for, and has begun to type the name of a file. After typing the first four letters, “file”, he

typed a question mark. ACRONYM then updated the screen as shown above, with a list of possible

completions of the file name included in the menu window. After this happens, the question mark is

automatically erased by ACRONYM.

WHAT ACRONYM LOOKED LIKETO THE USER 199

You may now type one or mere tile names n which to scarch. [f you don't
type any filz names, the standard input will be scarched. When you have
typed all the fiie names you want to scarch. press the RETURN key.

-- Help texts -~

*+ You may now type the name of any existing file.
*+ grep/egrep/fgrep: Search for a pattern in a file.
** Suminary of the grep command

** Optiuns for the grep command

** Arguments for the grep command

** Additional notes on the grep command

** txamples of the grep command

** What is a file?

“* What is a string?

** What is a regular expression?

** What the RETURN key is and what it means

-- Help menys --

$ grep chocolate filel

Ob chocolate is good

Ana chocolate s bad.

But when it comes to chocolate
I'm a cnocolate cad.

$

Press '?° for context-dependent help. DEL to exit Press HERE for basic help.

Here we see the completed result of the grep command. The user completed the file name as
“file1”, and pressed RETURN. ACRONYM then passed the completed command line on to the
UNIX shell, which executed the command “grep chocolate filel™. The four lines in that file which

contained the word “chocolate™ were then printed.

200 THE DESIGN AND EVALUATION OF ON-LINE HETL P SYSTEMS

Welcome to ACRONYM If you don't want to be here, press DEE to exit.

In addition to normai typewriter-style keys. yaur cemputer has a pointing
device known as a "mouse.” You can move this device around. causing the arrow
on your screen to move around and point at differcnt parts of the screen.

In this system. you can usc the mouse to get help in several ways.

fo begin with. you will notice that the highlighted line underneath the text
you are now rcading says "PRESS HERE to move farward." [If you use the

mouse to point the arvow at the word "HERE". and then press any button on
the mouse. you will find that the text in this window is scrolled forward --
that is, the beginning of the text will disappear. and new text will appear
at the end of the window. Try it and see.

If you can't seem to get the window to scroll torward, this probably means
that you are pointing the arrow a little too high. Note that it is the
arrow head. not its body. that should be pointing at the word "HERE".

In general. whenever this window or the one below it has more text than is

-- Help texts -- PRESS HERE to move forward
** How to usv the ACRONYM helip system
** at: Fxecute a Shell script at a specified time
** hb: print notices from pulletin board(s)
** hiff: be notified if mail arrives and who it is from
** ralr display calendar
** calendar: reminder calendar
** (at: display a text file
** ¢c: C compiter
** ccat: Print compressed files in uncompressed format
** ¢d or chdir: Change to another working directory
** chmod: Change the access mode of a file
*+ chat: Communicate with (Jlog in tu) another machine on the Ethernet
** ck: check if new mail has arrived
** cmp: Compare two files to see if they differ
** (muftp: lransfer files to and from other machines on the Fthernet
** cpnl: filter reverse line feeds
** comm: Compare two files and print matching and non-matching lines
** compact: compress files to save space
** cp: Copy file
** cz. convert files to press format and print them on the Dover

-- Help menus -- PRESS HERE to move forward

$ grep chocolate filel

Oh chocolate is yood

And rchocoleate is bad.

Sut when it <wres to chocalate
'm a chocolate cad.

$

Pross 72 for context-dependent help, DEL to exit. Press MERE for basic help.

After completing a command, ACRONYM generally leaves the help message from that command
showing on the screen, as the previous page showed. This is useful when commands are not quite
right; often the corrective information is already showing on the screen. However, this means that
users must explicitly request a return to ACRONYM's basic help menu. Here, that basic menu has
been obtained by typing a question mark before any new command had been typed. It can also be
obtained by pointing with the mouse at the “HERE™ in “Press HERE for basic help” at the bottom of

the screen.

WHAT ACRONYM LOOKI'D LIKE TO THE USER 201

Welcome to AURONYM It you o't want to be hers, press DEL to exit.

1n addition to normal typewriter-style keys. your computer has a pointing
device known as a "mouse.” You can move this device around. causing the arrow
on your screen to move around and pornt at different parts of the screen

In this system. you can use the mouse to get help in several ways

10 begin with. you will notice that the highlighted 1ine underneath the text
you are now reading says "PRESS HERt to move forward.™ If you use the

mouse to point the arrow at the word "HERE", and then press any button on
the mousc, “you wilt find that the text in this window is scrolled forward --
that is. the beginning of the text will disappear and new text will appear
at the end of the window. Iry 1t and sce.

1f you can't seem to get the windew to scroll forward. this probably means
that you are pointing the arrow a Iittle too high Note that it is the
arrow head. not its body. that should be pointing at the word "HERE™.

In general. wherever this window or the one below it has more text than is

-~ Help toxts -- PRESS HERE 1o move forward.
2% how to use the ACRONYM halp system
4 at: txecute a Shel) script at a specified time
“* phe print notices from bulletin board(s)
v tiff: be notifica if mail arrives and who it is from
** cal: display calendar
*+ calendar: reminder calendar
** cat: display a text file
** cc: C compiler
** ccat: Print compressed files in uncompressed format
** ¢d or chdir: Change to another wotking directory
** Chmod: Chanye the access mode of a file
*+ chat: Communicate with (log in to) another machine on the Ethernet
** ¢k: check if new mail has arrived
** cmp: Compare two files to see if they differ
** cmuftp: fransfer files to and from other machines on the tthernet
** ¢ol: tiiter reverse line feeds
**+ comm: Compare two tiles and print matching and non-matching lines
++ compact: compress files to save space
** cp: Copy file
** ¢z: convert files to press format and print them on the Dover

-~ Help menus -- PRESS HERE to mave forward

$ grep chocolate filel

Oh chocolate 1s good

Lnd chocalate is bad.

Put when it comes to chocolate
1'm a chocolate cad.

% help

Press 7 for context-dependent help. DL to exit Fress HERE for basic help.
Type a key word for which you want help: messages

For a second cxample, imagine a user trying to learn how to send electronic mail. Beginning with a

key word request, the user types “help™ and then, when asked for a key word. types “messages’”.

[
<
o]

THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Select the appropriate menpo item to fimt out avout the command listed,
which matched the key word “messages’

-- Help texts --
** Go back to the previvus help menu (root)
** bh: print notices from bulletin board(s)
** gcho- Display a message
** mesg: Enablesdisable reception of messages
** msys: System messages and junk mail program
** post: Post notice on bhulletin board(s)
** rsend: send a message to any user on any UNIX machine on the network
** send: Send a message to another user
*+ wall: Write to all users

-- Help menus -~

$ grep chocolate filel

Oh chocolate is gooa

And chocolate s bad.

But when it roncs to chocolate
I'm a chocolate cad.

$

Pross 7 four context-dependent heip DEL to exit. Press HERE for basic help.

In responses to the request for help on the key word “messages”, ACRONYM updates the display
as shown above. Now, imagine that the user incorrectly decides that the “send™ command is what he

wants, and begins typing such a command.

WHAT ACRONYM 100K ED LIKE TO THE USER 203

sends send a message to arcthar user

tormat: send destination-user[®hest] [tty-name] [-all] [message]
Arguments: destination-uscr : pursen you want to send a message to.
tty-name : use to iesolve ambiguity it the destination-user is
logged on more than once.

[-all] : send to all of the user’'s terminals

[message] : send a one-line message to the user

-- Help texts --

'L
s
*n
*w
%
.
s
e
.

Summary of the send command

Arguments for the send command

Additional notes on the send command

txamples of the send command

talk: Initiate a conversation with another user

reply: Join in to a conversation with another user

write: Send a message to another user

rsend: send a message to any user on any UNIX machine on the network
mesg: Enable/disable reception of messages

-~ Help menus -~

Oh

But

$ grep chocolate falel
And checoliate is bad.

1'm a4 chocolate cad.
§ send help

choculate is qood

wiren it comes to chocolate

Pross 7 for context-dependent help. DEL to exit. Fress HERE for basic help.

Type a key word for which you want help: mail

Here the user has typed “send™ and pressed SPACE, and ACRONYM has updated its help to the

basic help for the send utility.

From this help, the user can tell he’s got the wrong command, and he

tries another key word help request, this time using the key word “mail”.

204 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Select the appropriate menu item to find oul about the command tisted,
which matched the key ward ‘mail’

Help texts --

** 6o back to the previous help menu (send)

** mail: Send or receive mail

*+ hiff: be notified if mail arrives and who it is from

** ¢k; check if new mail has arrived

** hg: Mcrcury mail reading program

** mailg: Examine or delete entries in the network mail queue
** msgs: System messages and junk mail program.

-~ Help menus --

$ grep chocolate tilel

Oh chocelate s good

And chocolate 1s bad.

But when it comes to chocolate
1'm a4 chocolate cad.

Press 7. for context-dependent help, DEL to exit. Press HERE for basic helip.

Here the user has gotten help on the key word mail, and the menu makes it fairly obvious that what
he wants is the “mail”’ command. Note that he must himself explicitly erase the erroneous “send”

command he had already typed; in this picture, he has alrecady done so.

WHAT ACRONYM [OOKVD LIKE TO THE USER

05

mail: Send or receive mail
Format-1: mait user-1ist
tarmat-2: mail [options]

Respanses to 7

? help

d delete mail

q quit

w write to mbox

w file write to named file
RETURN proceed to next letter
p redisplay previous letter
Options:

-p display mail. no questions
-q quit on interrupt

-r reverse order

Ihe first format sends mail to the user-list. The second format displays
mail that you have received and prompts you with a 7 following each letter

-- Help texts --

** Summary of the mail command

** Options for the mail command

*+ Arguments for the mail cowmand

** Responses to the "7 prompt in the mail utility

** txamples of the mail command

** ck: check it new mail has arrived

** bhiff: be notified if mail arrives and who it is from
** post: Post notice un bulletin board(s)

** send: Send a message to another user

*+ rsend: send a message to any user on any UNIX machine on the network

-- Help menus --

$ grep checolate filel

Oh chocolate is good

And chocolate is bad.

But wren it cemes to chocolate
l'm a chocolate cad.

$ marl

Press ¢ for context-dependent help, Dtl to exit. Press HERE for basic help.

Here the user has typed “mail”, as the first part of his mail command, and ACRONYM has

updated the help windows accordingly. Not sure what to do next, the user selects (with the mouse)

the menu item cntitled “Examples of the mail command”.

206 IHE DESIGN AND EVAI UATION O ON-LINE HELP SYSTEMS

fhe first example below shows how to send a message to several users. In
this case, mail sends the message to users with the login nawes of hils,
atex. and jenny.

$ mai) hls alex jenny

(message)
(messayge)

You can also compose a message in a file and then send it by redirecting the
input to mail. ‘the command below sends the file today to barbara

$ mail barbara < today

- Help texts --
** Go back to the previous help menu (ml)
** mail: Send or receive mai!
*+ Summary of the mail command
** Arguments tor the mail command
** Responses to the '?7° prompt in the mail utility
** Optiaons for the mail command

-- Help menus --

$ grep chocolate filel

Oh chocolate is good

Aud chocolate is bad.

But when it comes to chacolate
I m a chocoiate cad.

$ marl n?

Press 7 for_context-dependent help, DEL_to exit . Press HERE for basic help

This picture shows the screen after ACRONYM has responded to the previous request for
“Examples of the mail command.” From the example, the uscr can tell that what he needs to do is to
type the name of the recipient of the mail. He then types “n”, the first letter of the name of the
person to whom he is sending mail, but then is unsure about the name's spelling. By typing a

question mark, he requests further help, including possible completions of the word he is currently

typing.

WHAT ACRONYM LOOKFD LIKETO THE USER

207

mar b Geoad oo
Format-1:
Farmat-2:

receive mail
moit opser-list
mail [options]

The first
mail that

format sends mail t
you have received a
Responses to 7
? help

d delete mail

q quit

w write to mbox

w file write to named file

Rt TURN proceed to next letter
p redisplay previous letter
Options:

-p display mail. no questions
- quit on intercupt

~r reverse order

o the user-list. The second format displays
nd prompts you with a 7 tollowing each letter.

~- Help texts

** You may type any valid use
network nsb

** Symmary of the mail comman
'’

*¥ Responses to the '7° promp
txamples of the mai! comma
.k check if new mail has

biff: be notified if mai)

post: Pust notice con bulle
send: Send a message to an
rsend: send a message to a

X
¥
*
e
o
"

r name now. inciuding any of these:
nichols naf
d

Arguments for the mail command

t in the mail utility

nd

arrived

arrives and wno it is from

tin board(s)

other user

ny user on any UNIX machine on the network

-~ Help mernus -~

$ grep chocolate filet

On chocolate is good

Ana chocolate is bad.

But when it comes to chocolat
I'm a chocolate cad.

$ mail nsh

Subject: This is my mai}
tnter your mail, terminated b

e

y Contiol1-D
playing.

It is very short. 1 am only
~D (EOT)

[mail sent to nsh]

$ m?

Pross "7 for context-depende

nt help, DEL to exit. Press HERE for basic help.

In this picture, we see the final help screen from the mail command. The menu window includes a

list of valid mail recipients that start with “n”, in re

[YOWE1]

only typing “n

sponse to the user’s typing a question mark after

for a user name. Once he had the spelling right, the uscr completed the interaction

with the mail command in the usual way, with the results shown here.

Now, just for fun, the user types only an “m” on a

command line and then types a question mark.

THE DESIGN AND EVAI UATION OFF ON-LINE HELP SYSTEMS

Welcome to ACRONYM, 1t you don't want Lo be nero, press DEE to exit.

In addition to normal typewriter-style keys. your computer has a pointing
device known as a "mouse." You can move this device around, causing the arrow
on your screen to move around and point at different parts of the screen.

In this system, you can use the mouse to get help in several ways

To begin with. you will notice that the highiighted line underncath the text
you are now rcading says "PRESS HERE to move forward.” It you use the

mopse to point the arrow at the word "HERE". and then press any button on
the mouse. you will find that the text in this window is scrolled forward --
that is. the beginning of the text will disappear. and new text will appear
at the end of the window. Iry it and see.

If you can't scem to get the window to scroll torward. this probably means
that you are pointing the arrow a [ittle too high. Note that it is the
arrow hcad. not its body. that should be pointing at the word "HERE".

In general. whenever this window or the une below it has more text than is
]

-~ Help texts -- PRESS HERE tu move forward.

** How to use the ACRONYM help system

** mail: Send or receive mai

* maitq- txamine or delete entries in the network mail queue
** mesy: boablesdisable reception of messages

** omsys. System messages and junk mail program.

** mkdir: Make a directory

** more: Display a file, one screenful at a time.

** mv: Rename a file

-- Help

menis --

$ grep chocolate fifed

Oh cnocolate is good

And chocolate is bac

But when 1t comes tc chocolate

I'm a chocolate cad.

$ mail nsb

Subject: This is my mail

tnter your mail, terminated by Control-D
It is very short. [am only playing.
“D (EOT)

[mail sent to nsb]

$m

Press 7 tor context-dependent help, DEL to exit. Press HtRE for basic help.

Here, in response to an “m” followed by a question mark, ACRONYM has retained the standard

help text, but has updated it menu to eliminate those commands which do not start with “m”.

WHAT ACRONYM 1 OOKED LIKE 10 THE USER 209

Welcome to ACRONYM 1t you don’ t want Lo vbe here, press DEL to exit

In addition to normal typewriter-style keys, your computer has a pointing
device known as a "mouse." You can move this device around. causing the arrow
on your screen to meve around and point at different parts of the screen.

In this system. you can use the mouse to get help in several ways.

fo begin with, you will notice that the highlighted line underneath the text
you are now reading says "PRESS HERE to move forward." If you use the

mouse to point the arrow at the word "HERE", and then press any button on
the mouse. you will find that the text in this window is scrolled forward --
that is. the beginning of the text will disappear. and new text will appear
at the end of the window. Try it and see.

If you can't scem to get the window to scroll forward. this probably means
that you are pointing the arrow a littie too high. Note that it is the
arrow head. not its body. that should be painting at the word "HERE"

In general. whenever this window or the one below it has more text than is

-- Help texts -- PRESS HERE to move forward,
** How to use the ACRONYM holp system
** at: kxecute a Shell script at a specified time
#* bb: print notices from bulletin board(s)
*» hiff: be notified if mai! arrives and who it is from
*+ cal: display calendar
++ calendar: reminder calendar
*+ cat; display a text file
** cc: C compiler
#* ccat: Print compressed files in uncompressed format
** ¢4 or chdir: Change to another working directory
*+ chmod: Change the access mode of a file
** chat: Communicate with (log in to) another machine on the Ethernet
** ck: check if new mail has arrived
** cmp: Compare two files to see if they differ
**+ cmuftp: Transfer files to and from other machines on the Ethernet
** ¢ol: filter reverse line feeds
#+ comm: Compare two files and print matching and non-matching lines
** compact: compress files to save space
** cp: Copy file
*+ cz7: convert files to press format and print them on the Dover

-- Help menus -- PRESS HERE to move forward.

$ grep chocolate filel

Oh c¢hocolate is good

And chocolate is bad.

But whern it cemes to chocalate

I'm a chocolate cad

$ mail nsb

Subject: Ihis dis my mai)

Frter your mail, terminated by Control-D
It is very short. [am only playing

~D (t0T)

{mail sent to nsb]

$

Press 7 for contexl-dependent heip. OEL to exit. Press HERE tor basic help.

Here the user has erased the “m’ he typed, and returned to ACRONYM’s basic help. Though
somewhat artificial, the examples in this chapter have at least demonstrated the important
mechansisms ACRONYM uscs to provide help to its users. Further information, including a

videotape of the system in use, is available from the author.

210 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

THE IMPLEMENTATION OF ACRONYM 211

Appendix C
The Implementation of ACRONYM

In this appendix, a few raw files from ACRONYM's database arc presented in order to convey the
flavor of the implementation. That flavor, incidentally, is not terribly tasty: ACRONYM was
designed and implemented in a hurry, with reliability and structural integrity entirely ignored when 1
thought I could save myself a few hours. It is straightforward to see that a more “correct”

implementation could produce equal or better results.

ACRONYM'’s view of the world is that it is a great big network of information. 'That network has a
starting node, called the root, and two distinct types of links between nodes. Those links may ve

referred to as syntactic and semantic links.

A syntactic link specifics a transition in the current world-state which is made on the basis of a
partial command from the user. Thus, for example, when the user types “Is” from thc root state, a
transition is made to the state corresponding to a partial “Is” command. Naturaily. the help provided

in this state is specific help for the Is utility.

A semantic link specifies a topical connection between two information nodes. Thus, if the user is
currently in the “del” state, a semantic link to the “Isd” command ensures that one item in the help
menu will be a pointer to the “Isd” command. However, there is nothing that the user can type in the
current statc that will move him directly into the “Isd” state. (Of course, he can crase the “del”

command and type “Isd”, but these are two separate operations.)

In ACRONYM, nodes can be linked either just semantically, just syntactically, or both. The

connections are specified in a clumsy but workable language designed for the purpose.

Fach node in the network must be given a unique name by the database designer. That name, for
reasons related to UNIX file naming conventions, can be at most nine letters long. For each node,

the databasc designer has to crate two files, the “help™ and “hcom™ files.

212 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

The “help™ file is just a file in the database directory, named by the node name followed by
“help”, which contains the help text exactly as it will appear in the help text window. The *“hcom”
file. named by the node name followed by “.hcom”, contains a description of links to and from the

node.

When the ACRONYM database is compiled, ACRONYM reads in a/l of the hcom files and then
produces, for each node, a third file called the “hmen™ file. This file, which is named by the node
name followed by “.hmen”, is the menu of related topics which will be shown to the user when he is
secing the associated “.help™ file. The file also contains some pointer information which will be
hidden from the user. In general, ACRONYM menus come from these pre-compiled hmen files,
although in certain circumstances (those involving dynamic operations such as file name or user

name completion), ACRONYM will construct such menus “on the fly”.

The language which is used in the hcom files to specify the structure of the database is simple but
ugly. The hcom file consists of two parts: the first line is the key line, a short description of the node
which will be used in the construction of menus which point to that node. This first line might best
be thought of as a “long name™ for the node, where the actual node name is limited to nine characters

because of the file naming conventions.

After that first line, the remainder of an hcom file consists simply of a series of paired words
specifying links. In each pair of words, the first word specifies the nature of the link, while the
second word specifies the node being linked to. By default, all links are both semantic and syntactic,
with the first word interpreted as a description of what the user has to type to make a syntactic
transition. Thus, the line which appears in the root hcom file (“root.hcom™), “grep grep” spccifies
that if, in the root state, a user types “grep”, then ACRONYM’s world state should be changed to the

“grep” node. It also specifies that the root menu includes an entry for grep (this is the semantic link).

In a first version of ACRONYM., the syntactic links could be specified with arbitrary regular
expressions: hence a line in an hcom file of the form “xy.* foo” would allow a syntactic transition to
node “foo” if the user typed any word beginning with “xy”. This mechanism proved unnecessary,
and was removed for efficiency considerations. In its place, however, a few special links were created.
If the link is specificd as “@file”, then the transition is made when any file name is typed. Similarly,
“@user” allows transitions when user names are typed, “@dir” allows transitions when directory
names are typed, and “@filewrite™ allows transitions when any potentially valid (writable) file names

are typed. Finally, to facilitatc a few special cases of the UNIX command language without regular

THE IMPLEMENTATION OF ACRONYM 213

expression parsing, “@opt” matches any string starting with a dash (*-7), and “@any"” matches any

single word.

All of these mechanisms by default create both syntactic and semantic links; the syntactic links
permit state transitions in the parsing process, while the semantic links mandatec menu cntries.
Syntactic-only links arc created by preceding the name of the node being linked to with an “@" sign.
Thus an hcom line like “@file @foo” specifies a syntactic link to node “foo™ whenever a file name is

typed, but does not create any entries in the associated help menu.

Semantic only forward links are created via the “@link™ link specification. Thus a line in an hcom
file of the form “@link foo™ creates a menu link to node foo, but does not permit any state transitions
during parsing. This is used for concept-related links, as in “examples”, “summary”, related

commands, and so on.

For convenience, the semantic links can be specified in either direction. Thus, if the file
“foo.hcom™ contains the line “@link bar”, this creates a menu item in foo’s help menu which refers
to the node “bar”. However, the “@key” link mechanism can be used to specify links in the other
direction: a line in “foo.hicom™ that says “@Xey bar” creates a link from bar’s help menu to the node
foo. (The word “key” here is intended to suggest key words: in this example. we are saying in effect

that bar is a key word for foo, so that people sceing help for bar should also be pointed at foo.)

Such are the mechanisms involved in ACRONYM'’s database. The deeply interested reader will
find, in the rest of this appendix, all of the help, hcom, and hmen files that were used in the examples
shown in Appendix B. By consulting these file listings while reading that appendix, it should be
possible to obtain a clearer picture of what ACRONYM was actually doing in the examples presented

there.

It will be helpful. in reading the hmen files, to note that the first 17 characters of each line of the
hmen file is hidden from the user’s view when ACRONYM is in use. (Actually, only 14 characters
are hidden in the function key version, but 17 are hidden in the mouse version, which is what
Appendix B simulates.) The first 14 characters specify the name of the node to which the menu
refers, while the next three characters offer a function key to be used to select that menu item, for

versions of ACRONYM which use function keys.

One final note about ACRONYM worth knowing is that an alias mechanism is provided to

facilitate processing of key word synonyms and of key words longer than the nine Jetter maximum

214 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

length for node names. A file named “ALIASES™ provides a sct. of aliascs, such as “privileges prot”
to indicate that a key word request for “privileges™ will point to the node named “prot”. In the
examples given here, the only time this mechanism is used is for the key word “messages™. This is
aliased to the key word “message” in the ALIAS file. Thus, the relevant file names are names such as

“message.hcom” instead of “messages.hcom”.

The files are listed in alphabetical order. All files used in the examples in Appendix B are included,
and no others. Of course, other hcom files were used in the compilation process that produced the
hmen files, using the @kcy mechanism. However, no other hmen or help files were used.
grep.hcom

grep/egrep/fgrep: Search for a pattern in a file.
@opt grep
@any G@grep-1
@Link grep-s
@Link grep-o
@Link grep-a
@Link grep-n
@Link grep-e
@key search
@key pattern
@key string
Gkey file
@link file
Gkey find
@Key word
GLink siring
eLink regex
@link egrep
@1link fgrep

grep.help

grep: Search for a pattern in a file.
Format: grep [options] pattern [file-1ist]
Options: -¢ (count) display number of lines only
-e (expression) pattern can begin with hyphen
-1 (1ist) display filenames only
-n (number) display line numbers
-s (status) return exit status only
-v (reverse) reverse sense of test
-i (ignore case) consider upper and lower case equivalent
Arguments: pattern : a regular expression, can be a simple string

grep.hmen

grep-s f2 ** Summary of the grep command

grep-o f3 ** Options for the grep command

grep-a f4 ** Arguments for the grep command

grep-n f5 ** Additional notes on the grep command
grep-e f6 ** Examples of the grep command

file f7 ** What is a file?

string f8 ** What is a string?

regex f9 ** What is a regular expression?

egrep f1 ** egrep: Fast search for a pattern in a file

fgrep f2 ** fgrep: Fast search for a string (word) in a file

THID IMPLEMENTATION O ACRONYM 215

grep-1.hcom

grep command after pattern is specified
@file grep-1
@link grep
Glink grep-s
@Link grep-o
@GLink grep-a
GLink grep-n
@BLink grep-e
@link file
BLink string
@Link regex
GLink return

grep-1.help

You may now type one or more file names in which to search. If you don’t
type any file names, the standard input will be searched. When you have
typed all the file names you want to search, press the RETURN key.

grep-1.hmen

file f2 ** You may now type the name of any existing file.
grep f3 ** grep/egrep/fgrep: Search for a pattern in a file.
grep-s f4 ** Summary of the grep command

grep-o f5 ** Options for the grep command

grep-a f6 ** Arguments for the grep command

grep-n f7 ** Additional notes on the grep command

grep-e f8 ** Examples of the grep command

fite fg ** What is a file?

string f1 ** What is a string?

regex f2 ** What is a regular expression?

return f3 ** What the RETURN key is and what it means
grep-e.hcom

Examples of the grep command
@Link grep

@Link grep-s

@Link grep-a

@Link grep-n

@Link grep-o

216 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

grep-e.help
The following examples assume that the working directory contains 3 files:
"testa", “"testh", and "testc". The contents of each file is shown below.
testa testb testc
aaabb aaaaa AAAAA
bhbcce bbbbb BBBBB
ff-ff ccecce ccccec
cccdd ddddd DDDDD
dddaa

grep can search for a pattern that is a simple string of characters. The
following command line searches "testa” for the string "bb". grep displays
each line containing bb.

$ grep bb testa
aaabb

bbbcc

3

The -v option reverses the sense of the test. The examplie below displays
all the lines WITHOUT bb.

$ grep -v bb testa
fe-ff

ccedd

dddaa

$

The -n flag displays the line number of each displayed line.

$ grep -n bb testa
1:aaabb

2:bbbcc

$

grep can search through more than one file. Below, grep searches through
each file in the working directory. (The ambiguous file reference * matches
all filenames.) The name of the file containing the string precedes each
Tine of output.

$ grep bb *
testa:aaabb
testa:bbbcc
testb:bbbbb
$

The search that grep performs is case-sensitive. Because the previous
examples specified lowercase bb, grep did not find the uppercase string,
BBBBB, in testc. The -i option causes uppercase and lowercase letters
to be regarded as equivalent.

$ grep -i bb *
testa:aaabb
testa:bbbcc
testb:bbbbb
testc: BBBBB

)

The -c option displays the name of each file, followed by the number of
lines in the file that contain a match.

$ grep -c bb *
testa:2

THE IMPLEMENTATION OF ACRONYM 217

testb:1
testc:0
$

The -e option searches for a string that begins with a hyphen. This option
causes grep to accept the hyphen as part of the pattern and not as an
indicator that an option follows.

$ grep -e -ff *

testa: ff-ff

$

The following command line displays lines from the file text2 that contain a
string of characters starting with "st", followed by zero or more characters

(.*), and ending in "ing".

$ grep 'st.*ing’ text2

5.4

grep-e.hmen

grep f2 ** grep/egrep/fgrep: Search for a pattern in a file.
grep-s f3 ** Summary of the grep command

grep-a f4 ** Arguments for the grep command

grep-n f5 ** Additional notes on the grep command

grep-o f6 ** Options for the grep command

grep-s.hcom

Summary of the grep command
@Link grep

@Link grep-o

@Link grep-a

@Link grep-n

@Link grep-e

BLink string

grep-s.help

grep searches one or more files, line by line, for a pattern. The pattern
can be a simple string, or another form of a regular expression. grep takes
various actions, specified by options, each time it finds a line that
contains a match for ihe pattern.

grep takes its input from files specified on the command line or from the
standard input.

grep-s.hmen

grep f2 ** grep/egrep/fgrep: Search for a pattern in a file.
grep-o f3 ** Options for the grep command

grep-a f4 ** Arguments for the grep command

grep-n f5 ** Additional notes on the grep command

grep-e f6 ** Examplies of the grep command

string f7 ** What is a string?

218 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

mail.hcom

Commands relating to the key word 'mail’
@link ml

@link biff

@link ck

@link hg

@1ink mailq

@1ink msgs

mail.help

Select the appropriate menu item to find out about the command listed,
which matched the key word 'mail’

mail.hmen

ml f2 ** mail: Send or receive mail

biff f3 ** piff: be notified if mail arrives and who it is from
ck f4 ** ck: check if new mail has arrived

hg f6 ** hg: Mercury mail reading program

mailq f6 ** mailg: Examine or delete entries in the network mail queue
msgs f7 ** msgs: System messages and junk mail program.
message.hcom

Commands relating to the key word 'messages’

@11ink bb

@1ink echo

@link mesg

@1ink msgs

@1ink post

@link rsend
81ink send
@link wall

message.help

Select the appropriate menu item to find out about the command listed,
which matched the key word 'messages’

message.hmen

bb f2 ** pb: print notices from bulletin board(s)
echo f3 ** echo: Display a message

mesg f4 ** mesg: Enable/disable reception of messages
msgs f6 ** msgs: System messages and junk mail program.
post f6 ** post: Post notice on bulletin board(s)

rsend f7 ** rsend: send a message to any user on any UNIX machine on the network
send f8 ** send: Send a message to another user

wall f9 ** wall: Write to all users

mi-e.hcom

Examples of the mail command

@Link ml

BLink mi-s

BLink ml-a

BLink mi-c

GLink mi-o

THE IMPLEMENTATION OF ACRONYM 219

mi-e.h

elp

The first example below shows how to send a message to several users. In
this case, mail sends the message to users with the login names of hls,
alex, and jenny.

$ mail hls alex jenny
(message)
(message)

You can also compose a message in a file and then send it by redirecting the
input to mail.

The

command below sends the file today to barbara.

$ mail barbara < today

ml-e.h

ml

ml-s
mi-a
ml-c
ml-o

men

ml.hcom

f2
f3
fa
f5
f6

* %
* %
* %
* %
* K

mail: Send or receive mail

Summary ot the mail command

Arguments for the mail command

Responses to the '?' prompt in the mail utility
Options for the maiil command

mail: Send or receive mail
@link @ml
Guser €ml1-1

@Link ml
Gopt ml-
@Link ml
@7ink ml
@Link ml
Gkey mai
Blink ck
@Link bi

-$S
0
-a
-C
-e
1

Ff

@1ink post
@link send

@link rs

end

ml.help

mail: Send or

fFormat-1

receive mail
: mail user-1list
Format-2: mail [options]

The first format sends mail to the user-list. The second format displays
mail that you have received and prompts you with a 7 following each letter.

Responses to 7

Options:

?
d
q

w
w file
RETURN
p

-p

-q
-r

help

delete mail

quit

write to mbox

write to named file
proceed to next letter
redispiay previous letter

display mail, no questions
quit on interrupt
reverse order

220

ml.hmen

ml-s
ml-o0
ml-a
mi-c
ml-e
ck
biff
post
send
rsend

f2
f3
f4
fb
f6
f7
fé
f9
f1
f2

%
* ok
LR
LR
* &
* %
* K
* %
LR

* K

THE DESIGN AND EVALUATION O ON-LINE HELP SYSTEMS

Summary of the mail command

Options for the mail command

Arguments for the mail command

Responses to the *?° prompt in the mail utility

Examples of the mail command

ck: check if new mail has arrived

biff: be notified if mail arrives and who it is from

post: Post notice on bulletin board(s)

send: Send a message to another user

rsend: send a message to any user on any UNIX machine on the network

THE IMPLEMENTATION O ACRONYM 221

root.hcom

This is the root file for the ACRONYM help system. This is where
I'11 explain how all such files work.

First of all, each node has three files. The .help file is pure help
text. The .hcom files, like this, are information used for compiling
the current version of the help network used for dynamic help and
dynamic menu generation. A1l hcom files must adhere to the same fairly
stupid syntax. which is explained only here. (The third file for each
node is the .hmen file, which is a menu generated automatically from
the .hcom file by the ack program, as necessary.)

This is a comment. Comments must start the Tine with a bang.

!
1
!
!
!
!
!
!
!
1
!
!
!
! The name "root" is special. ACRONYM knows that "root.hcom" 1is where

! everything begins. However, the syntax is the same for each node,

! even the root. Any file with an ".hcom" extension in the help directory
! (specified as HELPDIR in ack.ml and ack.c) is considered such a node.

1

[

i

!

!

!

i

1]

!

!

!

!

!

4

The first non-comment line is crucial: it is the short description of
! the corresponding help node (.help file), and is used for dynamic
! menu generation.

A11 remaining non-comment lines have two fields, separated by white
space. Undetermined havoc may result if the line has only one field.

The first field is the pattern to be matched. If this doesn’'t start
with an "@" sign. it is a fixed pattern (word) that must be matched
exactly. The extras are provided by the following possible magic patterns:

@any matches anything

Gopt matches anything that starts with a "-"

Bfile pattern must be a file name

@filewrite pattern must be a potential (creatable) file name

edir pattern must be a directory name

Quser pattern must be a user login name

@link non-syntactic link; used only for menu generation,
never for command parsing.

Gkey The inverse of @1ink; creates a link to the current

frame from the one named on the rest of the line.
This is the mechanism used for specifying key words.
A frame exists for each key word, from which each
node declares back-links via @key.

! Creating more magic "@" cptions is fairly easy when it becomes necessary,
but of course that does involve some reprogramming.

1

!

!

!

!

!

!

1

1

1

1

1

1

!

! The second field is the node to which a match passes control. It is the

| name to which ".hcom" or ".help" should be appended. The @Link and @key

| patterns give node names which are not used for parsing, only for menu

| traversals. You can do the reverse -- specify a link that is for parsing

| but NOT for menu traversal -- by preceding the node name (the second field)
! with an "@". Thus, if a line says "Gopt @foo”. then an option typed at that
! point will indeed pass control to node foo: however, there will be no Tink
! to node foo in the hmen menu.

!
!
!
!
!
1
!
1
!
!

! WARNING: Patterns other than the special ones that start with "@" are
case sensitive. That is. a pattern of "1s" won’'t match "LS". However,
things that start with "@" are case-insensitive., as are node names.
(Actually, that's a slight oversimplification: node names are mapped
entirely to lower case, so that the file names (.hcom, etc.) MUST be
all lower case. References to node names within hcom files are more
flexible. in that ACRONYM will assume that you meant to type in all lower
case for node names.

222 THE DESIGN AND EVALUATION OF ON-LINE HETP SYSTEMS

| Remember., the first non-comment line is the magic keyline.
|
Introduction and main menu for the ACRONYM help system
@1ink acronym
at at

bb bb

biff biff

cal cal .
calendar cale
cat cat

cc cc

ccat ccat

cd cd

chdir cd
chmod chmod
chat chat

ck ck

cmp cmp
cmuftp cmuftp
col col

comm comm
compact compact
cp cp

cz cz

date dt

dcat dcat

del del

df df

diff diff

du du

echo echo

ecp ecp

egrep grep
expunge expunge
fgrep grep
file f1

find find
fing fing
finger finger
ftp ftp

grep grep
head head

hg hg

ki1l ki1l

Tn 1n

Tpg 1pq

ipr lpr

lprm lprm

1s 1s

Tsd 1sd

mail ml

mailqg mailq
mesg mesg
nsgs msgs
mkdir mkdir
more more

my mv

od od

opr opr
passwd passwd
Pj Pi

post post

pr pr

print print
ps ps

THE IMPLEMENTATION OI' ACRONYM

pwd pwd

reply reply
rev rev

rmorm

rmdir rmdir
rsend rsend
see see

send send
sleep sleep
sort sort
spell spell
strings strngs
stty stty
tail tail
telnet telnet
talk talk
time time
touch touch
tset tset

tty tty
ttyinfo ttyinfo
ttyis ttyis
uncompact uncom
undel undel
unig unigq
uptime uptime
users users

u users

utime utime
ww

wall wall

we wce

whenis whenis
who who
whoami whoami
write write

224 THE DESIGN AND EVALUATION OU ON-LINE HELP SYSTEMS

root.hmen

acronym f2 ** How tc use the ACRONYM help system

at f3 ** at: Execute a Shell script at a specified time

bb f4 ** bb: print notices from bulletin board(s)

biff f5 ** biff: be notified if mail arrives and who it is from

cal f6 ** cal: display calendar

cale f7 ** calendar: reminder calendar

cat f8 ** cat: display a text file

cc fg ** cc: C compiler

ccat f1 ** ccat: Print compressed files in uncompressed format

cd f2 ** cd or chdir: Change to another working directory

chmod f3 ** chmod: Change the access mode of a file

chat f4 ** chat: Communicate with (log in to) another machine on the Ethernet
ck f5 ** ck: check if new mail has arrived

cmp 6 ** cmp: Compare two files to see if they differ

cmuftp f7 ** cmuftp: Transfer files to and from other machines on the Ethernet
col f8 ** col: filter reverse line feeds

comm f9 ** comm: Compare two files and print matching and non-matching Tines
compact f1 ** compact: compress files to save space

cp f2 ** cp: Copy file

cz f3 ** cz: convert files to press format and print them on the Dover

dt f4 ** date: print today's date and time (and set it if you're the superuser)
dcat f5 ** dcat: convert troff output to press format for printing on Dover
del f6 ** del: Delete a file reversibly

df f7 ** df: Report on free disk space

dgiff f8 ** diff: Display the differences between two files in editing-oriented format
du f9 ** du: Summarize disk usage

echo f1 ** echo: Display a message

ecp f2 ** ecp: Ethernet file copy

grep f3 ** grep/egrep/fgrep: Search for a pattern in a file.

expunge f4 ** expunge: Permanenily get rid of deleted files

f1 fs ** file: Display file classification

find fo ** find: Find files.

fing f7 ** fing: front end for finger

finger f8 ** finger: User information Tookup program

ftp f9 4* ftp: Transfer files to and from other machines on the Internet (ARPAnet)
head f1 ** head: Give first few lines of a file

hg f2 ** hg: Mercury mail reading program

kitl f3 ** kill: Terminate a process

1n f4 ** 1n: Make a link to a file

1pq f5 ** 1pg: Display line printer queue

1pr f6 ** 1pr: Print a file on the line printer

Tprm f7 ** 1prm: Remove an entry from the line printer queue.

1s f8 ** 1s: Display information about a file

1sd f9 ** Jsd: list deleted files

ml f1 ** mail: Send or receive mail

mailqg f2 ** mailq: Examine or delete entries in the network mail queue

mesg f3 ** mesg: Enable/disaple reception of messages

msgs f4 ** msgs: System messages and junk mail program.

mkdir f6 ** mkdir: Make a directory

nore f6 ** more: Display a file, one screenful at a time.

mv f7 ** mv: Rename a file

od f8 ** od: Dump the contents of a file

opr fg9 ** opr: Queue files for Dover or line-printer and/or examine & modify queuve
passwd f1 ** passwd: Change login password

pJj f2 ** pj: print system and user identification

post f3 ** post: Post notice on bulletin board(s)

pr f4 ** pr: Paginate file for printing

print f5 ** Commands relating to the key word ’print’

ps f6 ** ps: Display process status

pwd f7 ** pwd: Print working directory name

reply f8 ** reply: Join in to a conversation with another user

rev f9 ** rev: Reverse each line of a file.

rm f1 ** rm: Delete a file (remove a link)

THE IMPLEMENTATION O ACRONYM 225

rmdir
rsend
see
send
sleep
sort
spell
strngs
stty
tail
telnet
talk
time
touch
tset
tty
ttyinfo
ttyis
uncom
undel
uniq
uptime
users
utime
w

wall
we
whenis
who
whoami
write

f2
f3
fa
b5
f6
f7
f8
f9
fi
f2
f3
fa
f5
f6
f7
f8
f9
f1
f2
f3
f4
f5
f6
f7
fa
f9
f1
f2
f3
fa
f5

* %
* ¥
¥
* ok
*x
* %
LR
* %
* %
* ok
* %
* %
* %
* ok
* %
Ak
* %
* %
* %
%
ok
¥
* ok
* %
»
* %
* %
%
* %
* %

* *

rmdir: Delete a directory

rsend: send a message to any user on any UNIX machine on the network
see: See what a file has in it

send: Send a message to another user

sleep: Put the current process to sleep

sort: Sort and/or merge files

spell: Check a file for spelling errors.

strings: Find and display the printable strings in a binary file
stty: Display or establish terminal parameters

tail: Display the last part (tail) of a file.

telnet: Communicate with (log in to) another machine on the Internet
talk: Initiate a conversation with another user

time: Time a command

touch: Update a file's modification time.

tset: Set terminal modes

tiy: Display the terminal pathname

ttyinfo: Find out information about terminals

ttyis: Discover where a terminal is

uncompact: Restore compressed files to their original state
undel: Restore a deleted file

unig: Display lines of a file that are unique

uptime: Show how long system has been up

u or users: Compact list of users who are on the system

utime: Modify the access and/or modified times of a file

w: List who is on the system and what they are doing

wall: Write to all users

wc: Display the number of lines, words, and characters in a file.
whenis: calendar expert program that prints dates and times

who: Display names of users

whoami: Print effective current user id.

write: Send a message to another user

226 THE DESIGN AND EVALUATION OIF ON-LINE HHELP SYSTEMS

root.help

Welcome to ACRONYM. If you don’t want to be here, press DEL to exit.

In addition to normal typewriter-style keys, your computer has a pointing
device known as a "mouse." You can move this device around, causing the arrow
on your screen to move around and point at different parts of the screen.

In this system, you can use the mouse to get help in several ways.

To begin with, you will notice that the highlighted line underneath the text
you are now reading says "Point HERE to move forward.” If you use the

mouse to point the arrow at the word "HERE". and then press any button on
the mouse, you will find that the text in this window is scrolled forward --
that is, the beginning of the text will disappear, and new text will appear
at the end of the window. Try it and see.

If you can't seem to get the window to scroll forward. this probably means
that you are pointing the arrow a little too high. Note that it is the
arrow head, not its body. that should be pointing at the word "HERE".

In general, whenever this window or the one below it has more text than is
currently visible, the line at the bottom of the window will offer you a
place to point with the mouse to scroll the text in the window. Right now,
for instance, you will notice that there is a part of that 1ine that says
"Point HERE to move backward." In general. this special line will be the
only way you have of knowing that there are more texts than what you can
read at the moment. so you should keep your eyes open for it.

As you may have guessed, this top window on your screen will be used for
explanatory texts like the one you're reading now. The second window is a
"menu" of options that you can use to get additional help. Each line
contains a brief description of another help topic. If you use the mouse to
point at that line. and then press any bution on the mouse. you will be
showin the corresponding heip texts.

Sometimes there will be more choices in the menu than will fit in the menu
window. At that time, the special line at the bottom of the window will
offer you a piace where you can point in order to move forward or backward
in the 1ist of choices. This 1is just like moving around in the help window.
Feel free to try it and see.

There are many other ways in which you can get help using the ACRONYM help
system. To find out about them, look through the list of choices in the
menu window and point to the appropriate line using your mouse. (Depending
on when you are seeing this, you will probably want either the first or
second line in the menu window.)

send.hcom

send: Send a message to another user
@any send
BLink send-s
@Link send-a
@Link send-n
@Link send-e
@Link talk
@Vink reply
@Link write
@Link rsend
@key conv
@key user

[HE IMPLEMENTATION OF ACRONYM 227

send.help

send: send a message to another user
Format: send destination-user[@host] [tty-name] [-al1] [message]
Arguments: destination-user : person you want to send a message to.
tty-name : use to resolve ambiguity if the destination-user is
Togged on more than once.
[-a11] : send to all of the user's terminals.
[message] : send a one-line message to the user.

send.hmen

send-s f2 ** Summary of the send command

send-a f3 ** Arguments for the send command

send-n f4 ** Additional notes on the send command

send-e f5 ** Examples of the send command

talk f6 ** talk: Initiate a conversation with another user
reply f7 ** reply: Join in to a conversation with another user
write f8 ** write: Send a message to another user

rsend f9 ** rsend: send a message to any user on any UNIX machine on the network
mesg f1 ** mesg: Enable/disable reception of messages
word.hcom

Commands relating to the key word ‘word’

word.help

Select the appropriate menu item to find out about the command listed,
which matched the key word 'word’

word.hmen

grep f2 ** grep/egrep/fgrep: Search for a pattern in a file.
egrep f3 ** egrep: Fast search for a pattern in a file

fgrep fa ** fgrep: Fast search for a string (word) in a file

wC f5 *+ wc: Display the number of lines, words, and characters in a file.

228 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

THIEE TWO UNIX MANUALS 229

Appendix D
The Two UNIX Manuals

The experiments reported in this thesis strongly suggest that the quality of help texts is far more
important than the mechanisins by which those texts are accessed or presented. However, several
standard “readability” metrics failed to reliably reflect which of the texts studied would be most
useful. Although there is a wide litcrature on the issue of text readability, there are no “fail-safe”

formulas to guarantee readability.

In the interest of promoting more informative and readable texts. samples of each are reproduced
here. For cach of five commands (grep, 1s, mail, rm, and sort), the standard UNIX manual entries

and the manual entries for the hybrid system are reproduced in this chapter.

The standard manual entries are the copyrighted property of AT&'1 Bell Laboratories, as modified
at Carnegie-Mellon University. The hybrid manual entries are derived from Mark Sobell’s bookzg,
and are reproduced here with permission of the author and publisher, who retain all rights to further
reproduction. The form in which they appear here is slightly modificd to reflect some variations in
the CMU versions of the commands they document, and to correct a few minor omissions. They

appear in precisely the form in which they were used in the experiments.

In comparing these sample texts, the reader should bear in mind that, for whatever reason, the
Sobeil/ACRONYM texts proved significantly better than the standard manual texts, and by a wide

margin. [tis left to the reader’s judgment to determine why this was the case.

281¢rom A Practical Guide to the UNIXTM System by Mark G. Sobell. Copyright (c) 1984 by Mark G. Sobell. Published
by the Benjamin/Cummings Publishing Company.

230 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

D.1. The grep command: standard UNIX manual

GREP(1) UNIX Programmer’s Manual GREP(1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNOPSIS
grep [option] ... expression [file]
egrep [option] ... [expression] [file]
fgrep [option] ... [strings][file]
DESCRIPTION

Commands of the grep family search the input files (standard
input defauit) for lines matching a pattern. Normally, each
line found is copied to the standard output. Grep patterns
are limited regular expressions in the style of ex(1); it
uses a compact nondeterministic algorithm. Egrep patterns
are full regular expressions; it uses a fast deterministic
algorithm that sometimes needs exponential space. Fgrep
patterns are fixed strings; it is fast and compact. The
following options are recognized.

-V A1l lines but those matching are printed.

- X (Exact) only lines matched in their entirety are
printed (fgrep only).

-C Only a count of matching lines is printed.

-1 The names of files with matching lines are listed
(once) separated by newlines.

-n Each line is preceded by its relative line number in
the file.

-b Each line 1is preceded by the block number on which it
was found. This is sometimes useful in locating disk
block numbers by context.

-1 The case of letters is ignored in making comparisons.
(E.g. upper and lower case are considered identical.)
(grep and fgrep only)

-s Silent mode. Nothing is printed (except error mes-
sages). This is useful for checking the error status.

-w The expression is searched for as a word (as if sur-
rounded by ‘\<' and '\>", see ex{1).) (grep only)

-e expression
Same as a simple expression argument, but useful when
the expression begins with a -.

-f file
The regular expression (egrep) or string list (fgrep)
is taken from the file.

THE TWO UNIX MANUALS 231

In all cases the file name is shown if there is more than
one input file. Care should be taken when using the charac-
ters $ * [~] () and \ in the expression as they are also
meaningful to the Shell. It is safest to enclose the entire
expression argument in single quotes ° °

Fgrep searches for lines that contain one of the (newline-
separated) strings.

Egrep accepts extended regular expressions. In the follow-
ing description ‘character’ excludes newline:

A\ followed by a single character other than newline
matches that character.

The character ~ ($) matches the beginning (end) of a
line.

A . matches any character.

A single character not otherwise endowed with special
meaning matches that character.

A string enclosed in brackets [] matches any single
character from the string. Ranges of ASCII character
codes may be abbreviated as in 'a-z0-9'. A] may occur
only as the first character of the string. A literal -
must be placed where it can’'t be mistaken as a range
indicator.

A regular expression followed by * (+. 7) matches a
sequence of 0 or more (1 or more, 0 or 1) matches of
the regular expression.

Two reguiar expressions concatenated match a match of
the first followed by a match of the second.

Two regular expressions separated by | or newline match
either a match for the first or a match for the second.

A regular expression enclosed in parentheses matches a
match for the regular expression.

The order of precedence of operators at the same parenthesis
level is [] then *+? then concatenation then | and newline.

SEE ALSO

ex(1), sed(1), sh(1)

DIAGNOSTICS

BUGS

Exit status is 0 if any matches are found, 1 if none, 2 for
syntax errors or inaccessible files.

Ideally there should be only one grep, but we don’t know a
single algorithm that spans a wide enough range of space-
time tradeoffs.

Lines are limited to 256 characters; longer lines are trun-
cated.

232 THE DESIGN AND EVALUATION O ON-LINE HELP SYSTEMS
D.2. The grep command: Sobell/ACRONYM Version

grep: Search for a pattern in a file.
Format: grep [options] pattern [file-1ist]
Options: -c (count) display number of Tines only
-e (expression) pattern can begin with hyphen
-1 (1ist) display filenames only
-n (number) display line numbers
-s (status) return exit status only
-v (reverse) reverse sense of test
-i (ignore case) consider upper and lower case equivalent
Arguments: pattern : a regular expression, can be a simple string

SUMMARY OF THE GREP COMMAND

grep searches one or more files, line by line, for a pattern. The pattern
can be a simple string, or another form of a regular expression. grep takes
various actions, specified by options, each time it finds a line that
contains a match for the pattern.

grep takes its input from files specified on the command line or from the
standard input.

OPTIONS FOR THE GREP COMMAND

If you do not specify any options, grep sends its lines to the standard
output. If you specify more than one file on the command line, grep
precedes each line that it displays with the name of the file that it came
from.)

-¢ (count) grep only indicates the number of lines in each file that
contain a match.

-e (expression) This option allows you to use a pattern beginning
with a hyphen (-). If you do not use this option and specify
a pattern ithat begins with a hyphen. grep assumes that the
hyphen introduces an option and the search will not work.

-1 (list) grep displays the name of each file that contains one or
more matches. grep displays each filename only once. even
if the file contains more than one match.

-n (number) grep precedes each line by its line number in the file.
The file does not need to contain line numbers -- this number
represents the number of lines in the file up to and
including the displayed line.

-s (status) grep returns an exit status value without any output.

-v (reverse sense of test) This option causes 1ines NOT containing
a match to satisfy the search. When you use this option by
itself, grep displays all lines that do not contain a match.

-i (1ignore case) This option causes lowercase letters in the pattern
to match uppercase letters in the file and vice versa.

ARGUMENTS FOR THE GREP COMMAND

The pattern is a simple string or a regular expression. You must quote
regular expressions that contain special characters, SPACEs, or TABs. An
easy way to quote these characters is to enclose the entire expression within
apostrophes.

The file-list contains pathnames of plain text files that grep searches.

ADDITIONAL NOTES ON THE GREP COMMAND

grep returns an exit status of zero if a match is found, one if no match is
found, and two if the file is not accessible or there is a syntax error.

There are two utilities that perform functions similar to that of grep. The

THE TWO UNIX MANUALS

egrep utility can be faster than grep, but may also use more space. fgrep
is fast and compact, but can process only simple strings, not regular
expressions.

EXAMPLES OF THE GREP COMMAND

The following examples assume that the working directory contains 3 files:

"testa", "testb", and "testc". The contents of each file is shown below.
testa testb testc
aaabb aaaaa AAAAA
bbbcc bbbbb BBBBB
ff-ff ccccece cccece
ccedd ddddd pDdoDD
dddaa

grep can search for a patterp that is a simple string of characters. The
following command line searches "testa"” for the string "bb". grep displays
each line containing bb.

$ grep bb testa
aaabb

bbbcc

$

The -v option reverses the sense of the test. The example below displays
all the lines WITHOUT bb.

$ grep -v bb testa
ff-ff

ccecdd

dddaa

$

The -n flag displays the line number of each displayed line.

$ grep -n bb testa
1:aaabb

2:bbbcc

$

grep can search through more than one file. Below. grep searches through
each file in the working directory. (The ambiguous file reference * matches
all filenames.) The name of the file containing the string precedes each
line of output.

$ grep bb *
testa:aaabb
testa:bbbcc
testb:bbbbb
$

The search that grep performs is case-sensitive. Because the previous
examples specified lowercase bb, grep did not find the uppercase string,
BBBBB, in testc. The -i option causes uppercase and lowercase letters
to be regarded as equivalent.

$ grep -1 bb *
testa:aaabb
testa:bbbcc
testb:bbbbb
testc: BBBBB

$

The -c option displays the name of each file, followed by the number of

233

234 THE DESIGN AND EVALUATION OF ON- LINE HELP SYSTEMS

1ines in the file that contain a match.

$ grep -c hb *
testa:2
testb:1
testc:0

$

The -e option searches for a string that begins with a hyphen. This option
causes grep to accept the hyphen as part of the pattern and not as an
indicator that an option follows.

$ grep -e -ff *

testa: ff-ff

$

The following command line displays lines from the file text2 that contain a
string of characters starting with "st", followed by zero or more characters
(.*), and ending in "ing".

$ grep 'st.*ing’ text2

i..

THE TWO UNIX MANUALS

D.3. The Is command: standard UNIX manual

LS(1) UNIX Programmer's Manual LS(1)

NAME
1s - 1ist contents of directory

SYNOPSIS
1s [-abcdfgilmgrstux1CFR] name
1 [1s options] name

DESCRIPTION
For each directory argument, 1s lists the contents of the
directory; for each file argument, 1s repeats its name and
any other information requested. The output is sorted
alphabetically by default. When no argument is given, the
current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but
file arguments appear before directories and their contents.

There are three major listing formats. The format chosen
depends on whether the output is going to a teletype, and
may also be controlled by option flags. The default format
for a teletype is to list the contents of directories in
multi-column format, with the entries sorted down the
columns. (Files which are not the contents of a directory
being interpreted are always sorted across the page rather
than down the page in columns. This is because the indivi-
dual file names may be arbitrarily long.) If the standard
output is not a teletype, the default format is to list one
entry per line. Finally, there is a stream output format in
which files are listed across the page, separated by ',°
characters. The -m flag enables this format; when invoked
as 1 this format is also used.

There are an unbelievable number of options:

-1 List in long format, giving mode, number of links,
owner, size in bytes, and time of last modification for
each file. (See below.) If the file is a special file
the size field will instead contain the major and minor
device numbers.

-t Sort by time modified (latest first) instead of by
name, as is normail.

[. .

-a List all entries; usually and are suppressed.
-s Give size in blocks, including indirect blocks, for

each entry.

-d If argument is a directory, Tist only its name, not its
contents (mostly used with -1 to get status on direc-
tory).

-r Reverse the order of sort to get reverse alphabetic or
oldest first as appropriate.

~u Use time of last access instead of last modification
for sorting (-t) or printing (-1).

235

236

THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

-C Use time of file creation for sorting or printing.

-1 Print i-number in first column of the report for each
file listed.

-f Force each argument to be interpreted as a directory
and 1ist the name found in each slot. This option
turns off -1, -t, -s, and -r, and turns on -a; the
order is the order in which entries appear in the
directory.

-g Give group ID instead of owner ID in Tong listing.
-m force stream output format

-1 force one entry per line output format, e.g. to a tele-
type

-C force multi-column output, e.g. to a file or a pipe

-q force printing of non-graphic characters in file names
as the character "?'; this normally happens only if the
output device is a teletype

-b force printing of non-graphic characters to be in the
\ddd notation, in octal.

-X force columnar printing to be sorted across rather than
down the page: this is the default if the last charac-
ter of the name the program is invoked with is an 'x’.

-F cause directories to be marked with a trailing /' and
executable files to be marked with a trailing "*’; this
is the default if the last character of the name the
program is invoked with is a "f’".

-R recursively list subdirectories encountered.

The mode printed under the -1 option contains 11 characters
which are interpreted as follows: the first character 1is

if the entry is

if the entry 1is

if the entry is

m if the entry is
file:

- if the entry is a plain file.

directory;

block-type special file;
character-type special file:
multiplexor-type character special

[l ==
[U -

The next 9 characters are interpreted as three sets of three
bits each. The first set refers to owner permissions; the
next to permissions to others in the same user-group; and
the last to all others. Within each set the three charac-
ters indicate permission respectively to read, to write, or
to execute the file as a program. For a directory, 'exe-
cute' permission is interpreted to mean permission to search
the directory for a specified file. The permissions are
indicated as follows:

if the file 1is readable;

if the file is writable;

if the file is executable;

if the indicated permission is not granted.

1 x E M

The group-execute permission character is given as s if the
file has set-group-ID mode: likewise the user-execute per-

THE TWO UNIX MANUALS 237

FILES

BUGS

mission character is given as s if the file has set-user-1ID
mode.

The last character of the mode (normally “x' or '-") is t if
the 1000 bit of the mode is on. See chmod(1) for the mean-
ing of this mode.

When the sizes of the files in a directory are listed, a

total count of blocks, including indirect blocks is printed.

/etc/passwd to get user ID's for "1s -1°.
/etc/group to get group ID’s for "1s -g’.

Newline and tab are considered printing characters in file
names.
The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype
is undesirable as ''1s -s'’ is much different than

**1s -s | Ipr’'. On the other hand, not doing this setting
would make old shell scripts which used 1s almost certain
Tosers.

Column widths choices are poor for terminals which can tab.

238 THE DESIGN AND EVALUATION OV ON-LINLE HELP SYSTEMS

D.4. The Is command: Sobell/ACRONYM Version

1s: Display information about a file
Format: 1s [options] [file-1ist]

Options: -a all entries
-d directory
-9 group
-1 display i-numbers
-1 long
-r reverse
-S size in blocks
-t modified time
-u accessed time

SUMMARY OF THE LS COMMAND

1s displays information about one or more files. It lists the information
alphabetically by filename unless you use an option tc change the order.

OPTIONS FOR THE LS COMMAND

The options determine the type of information, and the order in which the
information is displayed. When you do not use an option, s displays a
short listing, containing only the names of files. The options are:

-a (all entries) Without a file-list (no argument on the command
line), this option causes 1s to display information about
all the files in the working directory, including invisible
(hidden) files. When you do not use this option, 1s does
not list information about invisible files unless you
specifically request it.

In a similar manner. when you use this option with a
file-1ist that includes an appropriate ambiguous file
reference (wildcard)., 1s displays information about
invisible files.

-d (directory) This option causes 1s to display the names of
directories without displaying their contents. When
you give this option without an argument, 1s displays
information about the working directory (.). This option
displays plain files normally.

-g (group) This option causes 1s to display group identification.
When you use this option with the -1 option, 1s replaces the
owner name in the display with the group name.

-i (i-number) This option causes 1s to display the i-number of each
file. The i-number is the unigque identifying number that
UNIX assigned to the file. It is usually useless.

-1 (long) This option causes 1s to display eight columns of
information about each file. These columns are described in
another help message, "1s -1: long listings of file
information", which is one of your current help menu choices.

-r (reverse) This option causes 1s to display the 1ist of filenames
in reverse alphabetical order or, when used in conjunction
with the -t or -u options, in reverse time order (least
recently modified/accessed first).

-s (size) This option causes Is to display the size of each file in
512 byte blocks. The size precedes the filename.

when used with the -1 option, the -s option causes 1s to
display the size in column one and to shift each of the
other items over one column to the right.

-t (time modified) This option causes 1s to display the list of
filenames 1in order by the time of last modification: It
displays the files that were modified most recently first.

-u (time accessed) This option causes 1s to display the list of
filenames together with the last time that each file was

THE TWO UNIX MANUALS

accessed. The list is in alphabetical order if you do not
use an option that specifies another order.

LS -L: LONG LISTINGS OF FILE INFORMATION

The -1 option causes 1s to display eight columns of information about each
file in a format something like this:

drwxrwxr-x 1 jenny 1296 Apr 6 22:56 letter

The first column, which contains 10 characters, is divided as follows:

The first character describes the type of file:
- indicates a plain file

indicates a block device file
¢ indicates a character device file
d indicates a directory file

The next nine characters represent all the access permissions
associated with the file. These nine characters are divided
into three sets of three characters each.

The first three characters represent the owner’'s access
permissions. If the owner has read access permission to
the file, an "r" appears in the first character position.
If the owner is not permitted to read the file, a hyphen
appears in this position. The next two positions represent
the owner’s write and execute access permissions. A "w"
appears in the second position if the owner 1is permitted
to write to the file, and an "x" appears in the third
position if the owner is permitted to execute the file.

An "s" in the third position indicates that the file has set
user ID permission. A hyphen appears if the owner does not
have the access permission associated with the character
position.

In a similar manner, the second and third sets of three
characters represent the access permissions of the user’s
group and other users. An "s" in the third position of the
second set of characters indicates that the file has set
group ID permission.

Refer to the chmod utility for information on changing
access permissions.

The next column indicates the number of 1links to the file.

The third column displays the name of the owner of the file.

The fourth column indicates the size of the file in bytes, or, if
information about a device file is being displayed, the
major and minor device numbers. In the case of a directory,
this is the size of the actual directory file, not the size
of the files that are entries within the directory.

The fifth and sixth columns display the date and time the file was
Tast modified.

The last column displays the name of the file.

=

ARGUMENTS FOR THE LS COMMAND

When you do not use an argument, 1s displays the names of all the files in
the working directory.

The file-1ist argument contains one or more pathnames of files that 1s
displays information for. You can use the pathnames of any plain,
directory, or device file. These pathnames can include ambiguous file
references.

When you give an ambiguous file reference (wildcard), 1s displays the names
of all the files in any directories specified by the wildcard, in addition
to files in the working directory.

When you specify a directory file, 1s displays the contents of the

239

240 THE DESIGN AND EVALUATION O ON-LINIF HELP SYSTEMS

directory. 1s displays the name of the directory only when it is needed to
avoid ambiguity (i.e., when 1s is displaying the contents of more than one

directory, it displays the names of the directories to indicate which files
you can find in which directory). If you specify a plain file, 1s displays
information about just that file.

EXAMPLES OF THE LS COMMAND
A11 of the following examples assume that the user does not change from the
current working directory.

The first command line shows the 1s utility without any options or
arguments. 1s displays an alphabetical list of the names of the files in
the working directory.

$ 1s
bin calendar Tetters
c execute shell

Next, the -1 (long) option causes 1s to display a long list. The files are
sti11 in alphabetical order.

$ 1s -1
total 8

drwxrwxr-x
drwxrwxr-x 1

jenny 32 Apr 6 22:56 letters
jenny 1296 Dec 6 17:33 shell

drwxrwxr-x 2 jenny 80 Nov 20 09:17 bin
drwxrwxr-x 2 jenny 144 Sep 26 11:69 ¢
-rw-rw-r-- 1 jenny 104 Nov 28 11:44 calendar
-rwxrw-r-- 1 jenny 85 Nov 6 08:27 execute
2
6

The -a option lists invisible files when you do not specify an argument.

.profile c execute shell
bin calendar letters

Combining the -a and -1 options above causes 1s to display a long listing of
all the files, including invisible files, in the working directory. The
Tist is still in alphabetical order.

$ 1s -al

total 12

drwxrwxr-x 6 jenny 480 Dec 6 17:42
drwxrwxr-- 26 root 816 Dec 6 14:45 ..
-rw-rw-r-- 1 jeny 161 Dec 6 17:15 .profile

drwxrwxr-x
drwxrwxr-x 1

jenny 32 Apr 6 22:56 letters
jenny 1296 Dec 6 17:33 shell

drwxrwxr-x 2 jenny 80 Nov 20 09:17 bin
drwxrwxr-x 2 jenny 144 Sep 26 11:59 ¢
-rw-rw-r-- 1 jenny 104 Nov 28 11:44 calendar
-rwxrw-r-- 1 jenny 85 Nov 6 08:27 execute
2
6

The -r (reverse order) option is added to the command line from the previous
example. The list is now in reverse alphabetical order.

$ 1s -ral
total 12

drwxrwxr-x 16 jenny 1296 Dec 17:33 shell

6
drwxrwxr-x jenny 32 Apr 6 22:56 letters
“TWXTW-T -~ jenny 85 Nov 6 08:27 execute
“rW-rw-r-- jenny 104 Nov 28 11:44 calendar

drwxrwxr-x
drwxrwxr-x
“rwW-rw-r--
drwxrwxr-- 2

jenny 144 Sep 26 11:59 ¢

jenny 80 Nov 20 09:17 bin

jeny 161 Dec 6 17:15 .profile
root 816 Dec 6 14:45 ..

f< S S O QN X

THE TWO UNIX MANUALS 241

drwxrwxr-x 6 jenny 480 Dec 6 17:42

The -t (time) option causes 1s to 1list files so that the most recently
modified file appears at the top of the 1list.

$ 1s -t

total 8

drwxrwxr-x 16 jenny 1296 Dec 6 17:33 shell
-rw-rw-r-- 1 jenny 104 Nov 28 11:44 calendar

drwxrwxr-x
“PWXTW-T~—
drwxrwxr-x
drwxrwxr-x

jenny 80 Nov 20 09:17 bin
jenny 85 Nov 6 08:27 execute
jenny 144 Sep 26 11:59 ¢
-jenny 32 Apr 6 22:56 letters

NN N

The -r option, when combined with the -t option, causes 1s to list files so
that the least-recently modified file appears at the top of the list.

$ 1s -trl
total 8
drwxrwxr-x 2 jenny 32 Apr 6 22:56 letters
drwxrwxr~x 2 jenny 144 Sep 26 11:59 ¢
-rwxrw-r-- 1 jenny 85 Nov 6 08:27 execute
drwxrwxr-x 2 jenny 80 Nov 20 09:17 bin
-rw-rw-r-- 1 jenny 104 Nov 28 11:44 calendar
drwxrwxr~x 16 jeany 1296 Dec 6 17:33 shell

The next example shows the 1s utility with a directory filename as an
argument. 1s lists the contents of the directory in alphabetical order.

$ 1s bin
c e Isdir

The -1 option gives a long listing of the contents of the directory.

$ 1s -1 bin

total 3

-rwxrw-r-x 1 jenny 48 Oct 6 21:38 ¢
-rwxrw-r-- 1 jenny 156 Oct 6 21:40 e
-rwxrw-r-- 1 jenny 136 Nov 7 16:48 1sdir

To find out information about the directory file itself, use the -d
(directory) option. This causes 1s to only list information about the
directory.

$ 1s -d1 bin
drwxrwxr-x 2 jeany 80 Nov 20 09:17 bin

242 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

D.5. The mail command: standard UNIX manual

MAIL(1) UNIX Programmer's Manual MAIL(1)

NAME
mail - send and receive mail

SYNOPSIS
mail [-f [name]] [people ...]

INTRODUCTION
Mail is a intelligent mail processing system, which has a
command syntax reminiscent of ed with lines replaced by mes-
sages.

Sending mail. To send a message to one or more other peo-
ple, mail can be invoked with arguments which are the names
of people to send to. You are then expected to type in your
message, followed by an EOT (control-D) at the beginning of
a line. The section below, labeled Replying to or originat-
ing mail, describes some features of mail available to help
you compose your letter.

Reading mail. In normal usage, mail is given no arguments
and checks your mail out of the post office, then printing
out a one line header of each message there. The current
message is initially the first message (numbered 1) and can
be printed using the print command (which can be abtreviated
p). You can move among the messages much as you move
petween lines in ed, with the commands '+’ and "-' moving
backwards and forwards, and simple numbers typing the
addressed message.

Disposing of mail. After examining a message you can delete
(d) the message or reply (r) to it. Deletion causes the
mail program to forget about the message. This is not
irreversible, the message can be undeleted (u) by giving its
number, or the mail session can be aborted by giving the
exit (x) command. Deleted messages will, however. usually
disappear never to be seen again.

Specifying messages. Commands such as print and delete
often can be given a list of message numbers as argument to
apply to a number of messages at once. Thus ‘‘'delete 1 2°°
deletes messages 1 and 2, while '‘'delete 1-5'' deletes mes-
sages 1 through 5. The special name '"*’'’ addresses all
messages, and ''$’ " addresses the last message: thus the
command top which prints the first few Tines of a message
could be used in ‘"top *'° to print the first few lines of
all messages.

Replying to or originating mail. You can use the reply com-
mand to set up a response to a message, sending it back to
the person who it was from. Text you then type in, up to an
end-of-file (or a line consisting only of a ''."") defines
the contents of the message. While you are composing a mes-
sage. mail treats lines beginning with the character '~’
specially. For instance, typing ''~m’'’' (alone on a line)
will place a copy of the current message into the response
right shifting it by a tabstop. Other escapes will set up

THE TWO UNIX MANUAILS 243

subject fields, add and delete recipients to the message and
allow you to escape to an editor to revise the message or to
a shell to run some commands. (These options will be given
in the summary below.)

Ending a mail processing session. You can end a mail ses-
sion with the quit (q) command. Messages which have been
examined go to your mbox flle unless they have been deleted
in which case they are discarded. Unexamined messages go
back to the post office. The ~-f option causes mail to read
in the contents of your mbox (or the specified file) for
processing; when you quit mail writes undeleted messages
back to this file.

Personal and systemwide distribution lists. It is also pos-
sible to create a personal distribution lists so that, for
instance, you can send mail to '"cohorts'’ and have it go to
a group of people. Such lists can be defined by placing a
line like

alias cohorts bill ozalp sklower jkf mark cory:kridle

in the file .mailrc in your home directory. The current
1ist of such aliases can be displayed by the alias (a) com-
mand in mail. System wide distribution Jists can be created
by editing /usr/lib/aliases., see aliases(5) and deliver-
mail(8): these are kept in a slightly different syntax. 1In
mail you send, personal aliases will be expanded in mail
sent to others so that they will be able to reply to the
recipients. System wide aliases are not expanded when the
mail is sent. but any reply returned to the machine will
have the system wide alias expanded as all mail goes through
delivermail. If you edit /usr/lib/aliases. you must run the
program newaiiases(1)

Network mail (ARPA, UUCP, Berknet) Mail to sites on the
ARPA network and sites within Bell laboratories can be sent
using ''name@site’’ for ARPA-net sites or '‘machineluser’’
for Bell labs sites, provided appropriate gateways are known
to the system. (Be sure to escape the ! in Bell sites when
giving it on a csh command line by preceding it with an \.
Machines on an instance of the Berkeley network are
addressed as '‘machine:user’’, e.g. '‘csvax:bill’’. When
addressed from the arpa-net, '‘csvax:bill’’ 1is known as
‘‘csvax.bill@berkeley' .

Mail has a number of options which can be set in the .mailirc
file to alter its behavior; thus '’'set askcc'' enables the
"raskcc'' feature. (These options are summarized below.)

SUMMARY
(Adapted from the "Mail Reference Manual') Each command is
typed on a line by itself, and may take arguments following
the command word. The command need not be typed in its
entirety - the first command which matches the typed prefix
is used. For the commands which take message lists as argu-
ments, if no message list is given, then the next message
forward which satisfies the command's requirements is used.
If there are no messages forward of the current message, the
search proceeds backwards, and if there are no good messages
at all, mail types ''No applicable messages’’ and aborts the
command.

- Goes to the previous message and prints it out.
If given a numeric argument n ., goes to the n th

244

alias

chdir

delete

dp

edit

exit

from

headers

help

hold

mail

next

preserve

print

quit

THE DESIGN AND EVALUATION OF ON-LINEE HELP SYSTEMS

previous message and prints it.
Prints a brief summary of commands.
Executes the UNIX shell command which follows.

(a) With no arguments, prints out all
currently-defined aliases. With one argument,
prints out that alias. With more than one argu-
ment, adds the users named in the second and
later arguments to the alias named in the first
argument.

(c) Changes the user's working directory to that
specified, if given. If no directory is given,
then changes to the user’s login directory.

(d) Takes a list of messages as argument and
marks them all as deleted. Deleted messages
will not be saved in mbox , nor will they be
avaitable for most other commands.

(also dt) Deletes the current message and prints
the next message. If there is no next message,
mail says '"at EOF.'’

(e) Takes a list of messages and points the text
editor at each one in turn. On return from the
editor, the message is read back in.

(ex or x) Effects an immediate return to the
Shell without modifying the user’'s system mail-
box, his mbox file, or his edit file in -f

(f) Takes a list of messages and prints their
message headers.

(h) Lists the current range of headers, which is
an 18 message group. If a ""+’’ argument is
given, then the next 18 message group is

printed, and if a -’ argument is given, the
previous 18 message group is printed.

A synonym for 7

(ho, also preserve) Takes a message list and
marks each message therein to be saved in the
user’'s system mailbox instead of in mbox. Does
not override the delete command.

(m) Takes as argument login names and distribu-
tion group names and sends mail to those people.

(n like + or CR) Goes to the next message in
sequence and types it. With an argument list.
types the next matching message.

A synonym for hold.

(p) Takes a message 1ist and types out each mes-
sage on the user’'s terminal.

(q) Terminates the session, saving all
undeleted, unsaved messages in the user’s mbox
file in his login directory, preserving all mes-

THIE TWO UNIX MANUALS 245

sages marked with hold or preserve or never
referenced in his system mailbox, and removing
all other messages from his system mailbox. If
new mail has arrived during the session, the
message ‘' ‘You have new mail'’' is given. If
given while editing a mailbox file with the -f
flag, then the edit file is rewritten. A return
to the Shell is effected, unless the rewrite of
edit file fails, in which case the user can
escape with the exit command.

reply (r) Takes a message list and sends mail to each
message author just like the mail command. The
default message must not be deleted.

respond A synonym for reply

save (s) Takes a message list and a filename and
appends each message in turn to the end of the
file. The filename in quotes, followed by the
line count and character count is echoed on the
user's terminal.

set (se) With no arguments, prints all variable
values. Otherwise, sets option. Arguments are
of the form '‘option=value’'' or '‘option.’’

shell (sh) Invokes an interactive version of the
shell.
size Takes a message list and prints out the size in

characters of each message.

top Takes a message list and prints the top few
Tines of each. The number of lines printed 1is
controlled by the variable toplines and defaults

to five.
type (t) A synonym for print
unalias Takes a 1ist of names defined by alias commands

and discards the remembered groups of users.
The group names no longer have any significance.

undelete (u) Takes a message list and marks each one as
not being deleted.

unset Takes a list of option names and discards their
remembered values; the inverse of set

visual (v) Takes a message list and invokes the display
editor on each message.

write {(w) A synonym for save
xit {x) A synonym for exit

Here is a summary of the tilde escapes, which are used when
composing messages to perform special functions. Tilde
escapes are only recognized at the beginning of lines. The
name ‘‘tilde escape'' is somewhat of a misnomer since the
actual escape character can be set by the option escape.

~!tcommand Execute the indicated shell command, then return
to the message.

246 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

~C name ... Add the given names to the list of carbon copy
recipients.

~d Read the file '‘'dead.letter’'' from your home
directory into the message.

~e Invoke the text editor on the message collected
so far. After the editing session is finished,
you may continue appending text to the message.

~h Edit the message header fields by typing each
one in turn and allowing the user to append text
to the end or modify the field by using the
current terminal erase and kill characters.

~m messages Read the named messages into the message being
sent, shifted right one tab. If no messages are
specified, read the current message.

~p Print out the message collected so far, prefaced
by the message header fields.

~q Abort the message being sent, copying the mes-
sage to '‘dead.letter’’ in your home directory
if save is set.

~r filename Read the named file into the message.

~S string Cause the named string to become the current
subject field.

~t name ... Add the given names to the direct recipient

list.
~V Invoke an alternate editor (defined by the

VISUAL option) on the message collected so far.
Usually, the alternate editor will be a screen
editor. After you quit the editor, you may
resume appending text to the end of your mes-
sage.

~w filename Write the message onto the named file.

~|command Pipe the message through the command as a
filter. If the command gives no output or ter-
minates abnormally, retain the original text of
the message. The command fmt(1) is often used
as command to rejustify the message.

~~string Insert the string of text in the message pre-
faced by a single ~. If you have changed the
escape character, then you should double that
character in order to send it.

Options are controlled via the set and unset commands.
Options may be either binary, in which case it is only sig-
nificant to see whether they are set or not, or string, in
which case the actual value is of interest. The binary
options include the following:

append Causes messages saved in mbox to be appended
to the end rather than prepended. (This is
set in /usr/l1ib/Mail.rc on version 7 sys-
tems.)

THETWO UNIX MANUALS

FILES

ask

askcc

autoprint

ignore

metoo

quiet

save

Causes mail to prompt you for the subject of
each message you send. If you respond with
simply a newline, no subject field will be
sent.

Causes you to be prompted for additional
carbon copy recipients at the end of each
message. Responding with a newline indicates
your satisfaction with the current 7Tist.

Causes the delete command to behave like dp -
thus, after deleting a message, the next one
will be typed automatically.

Causes interrupt signals from your terminal
to be ignored and echoed as s.

Usually. when a group is expanded that con-
tains the sender, Lhe sender is removed from
the expansion. Setting this option causes
the sender to be included in the group.

Suppresses the printing of the version when
first invoked.

Causes the message collected prior to a
interrupt to be saved on the file
‘“dead.letter’’ in your home directory on
receipt of two interrupts (or after a ~qg.)

The following options have string values:

EDITOR Pathname of the text editor to use in the
edit command and ~e escape. If not defined,
then a default editor 1is used.

SHELL Pathname of the sheil to use in the ! command
and the ~! escape. A default shell is used
if this option is not defined.

VISUAL Pathname of the text editor to use in the
visual command and ~v escape.

escape If defined, the first character of this
option gives the character to use in the
place of ~ to denote escapes.

record If defined, gives the pathname of the file
used to record all outgoing mail. If not
defined, then outgoing mail is not so saved.

toplines If defined, gives the number of lines of a
message to be printed out with the top com-
mand; normally, the first five lines are
printed.

/usr/spool/mail/* post office

~/mbox your old mail

~/.mailrc file giving initial mail commands

/tmp/R# temporary for editor escape

/usr/1ib/Mail.help* help files

/usr/1ib/Mail.rc

/bin/mail

system initialization file
to do actual mailing

/etc/delivermail postman

247

248 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

SEE ALSO
binmail(1), fmt(1), newaliases(1), aliases(5), deliver-
mail(8)
"The Mail Reference Manual’

AUTHOR
Kurt Shoens

BUGS

THE TWO UNIX MANUAILS
D.6. The mail command: Sobell/ACRONYM Version

mail: Send or receive mail
Format-1: mail user-list
Format-2: mail [options]

The first format sends mail to the user-Jist. The second format displays
mail that you have received and prompts you with a ? following each letter.

Responses to 7

? help

d delete mail

q quit

w write to mbox

w file write to named file
RETURN proceed to next letter

p redisplay previous letter
Options:

-p display mail, no questions

-q quit on interrupt

-r reverse order

SUMMARY OF THE MAIL COMMAND

mail sends and receives mail between users. When you log on, the UNIX
system informs you if another user has sent you mail.

Use the first format ("mail user-Tist") to send mail to other users. When
sending mail, mail accepts text from the standard input. This input can be
redirected from a file or entered at the terminal. If you send mail from
the terminal, it must be terminated by a CONTROL-D or a line with just a
period on it. If you interrupt (DEL/RUBOUT/CONTROL-C) mail when you are
entering text at the terminal, the mail will not be sent.

Use the second format ("mail [options]") to display mail that you have
received. When displaying mail, the mail program prompts you with a
question mark following each piece of mail. The valid responses to this
prompt are discussed in the help text "Responses to the '7' prompt in the
mail utility", which is one of the entries in your current help menu.

OPTIONS FOR THE MAIL COMMAND

The following options affect mail that you have received and are displaying.
They are not for use when you are sending mail.

-p (display mail, no questions) This option causes the mail
program to display mail without prompting you after each
piece of mail.

-q (quit on interrupt) Without this option, the interrupt key
(usually DEL, RUBOUT, or CONTROL-C) stops mail from
displaying the current piece of mail and allows it to
proceed with the next. When you use this option, an
interrupt will stop execution of the mail program and return
you to the Shell without changing the status of your mail.

-r (reverse order) Without this option, mail is displayed in a
last-piece-of-mail-received, first-piece-of-mail-displayed
order. This option causes mail to display mail in
chronological order.

ARGUMENTS FOR THE MAIL COMMAND

The user-1ist contains the User ID names of the users you want to send mail
to.

RESPONSES TO THE '?° PROMPT IN THE MAIL UTILITY

249

250 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

The following are valid responses to the 7' prompt that is printed after
each piece of mail that the mail utility shows you.

? A question mark causes mail to display a summary of valid responses.

!<cmd> This response causes mail to exit to the Shell. execute whatever
command you typed, and return to the mail program when the command
has finished executing.

CONTROL-D This response causes the mail program to stop and leave unexamined
mail in the mailbox so that you can look at it the next time you
run mail.

d A d causes the mail program to delete the piece of mail it just
displayed, and proceed to the next one.

m{name] This response causes the mail program to remail the piece of mail to
the specified person or people. If you do not specify a person,
the mail is sent back to you again.

RETURN Press the RETURN key to proceed to the next piece of mail.

p A p causes the mail program to redisplay the previous piece of mail.

q A g has the same effect as CONTROL-D: you exit the mail program and
unexamined mail is saved until next time.

s[file] This response causes the mail program to save the piece of mail in
the named file or "mbox" if you do not specify a filename.

w[file] This response causes mail to save the piece of mail, without a
header, in the named file or "mbox" if you do not specify a filename.

X This response causes the mail program to exit and not change the
status of your mail.

EXAMPLES OF THE MAIL COMMAND

The first example below shows how to send a message to several users. In
this case, mail sends the message to users with the login names of hls,
altex, and jenny.

$ mail hls alex jenny

(message)
(message)

You can also compose a message in a file and then send it by redirecting the
input to mail. The command below sends the file today to barbara.

$ mail barbara < today

THETWO UNIX MANUALS

D.7. The rm command: standard UNIX manual

RM(1) UNIX Programmer's Manual RM(1)
NAME
rm, rmdir - remove (unlink) files
SYNOPSIS
m [-e][-f£1[-r]1[-1i][-1]fite
rmdir dir
DESCRIPTION

rm removes the entries for one or more files from a direc-
tory. If an entry was the last 1ink to the file, the file
is destroyed. Removal of a file requires write permission
in its directory, but neither read nor write permission on
the file itself.

If a file has no write permission and the standard input is
a terminal, its permissions are printed and a line is read
from the standard input. If that line begins with 'y’ the
file is deleted, otherwise the file remains. No questions
are asked and no errors are reported when the -f (force)
option is given.

If a designated file is a directory, an error comment is
printed unless the optional argument -r has been used. In
that case, rm recursively deletes the entire contents of the
specified directory. and the directory itseif.

If the -i (interactive) option is in effect, rm asks whether
to delete each file, and, under -r, whether to examine each
directory.

If the -f option is not in effect, rm checks the extensions
in the environment variable RMEXTS (see below) against the
final extensions of each file, and asks whether to delete
each file whose extension matches. This is to prevent
accidental deletion of source code and other important
files.

The null option - indicates that all the arguments following
it are to be treated as file names. This allows the specif-
ication of file names starting with a minus.

The option -e will print out the path of each file or direc-
tory as it is removed. This is useful in shell scripts.

rmdir removes entries for the named directories, which must
be empty.

ENVIRONMENT
RMEXTS is a list of extensions that you would like to pro-
tect, using commas and/or spaces as separators.

EXAMPLES
Each of the following examples would protect files with any
of the extensions ".c", ".h", ".mss", ".p", ".pas":

251

252 THLE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

RMEXTS="c,h,mss,p,pas”; export RMEXTS
RMEXTS="c h mss p pas”; export RMEXTS
RMEXTS="c , h , mss , p , pas": export RMEXTS

SEE ALSO
unlink(2)

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the
file ".." merely to avoid the antisocial consequences of

inadvertently doing something like 'rm -r .*°,

HISTORY
12-Nov-83 Neal Friedman (naf) at Carnegie-Mellon University
Added description of -e option, which was provided by
John Schlag.

20-Jan-82 John Wicks (jrw) at Carnegie-Mellon University
Modified to describe check for protected file exten-
sions set in the environment.

THETWO UNIX MANUALS
D.8. The rm command: Sobell/ACRONYM Version

rm: Delete a file (remove a Tink)
Format: rm [options] file~list
Options: -f force

-1 interactive

-r recursive

SUMMARY OF THE RM COMMAND

rm removes links to one or more file. When you remove the last link, you
can no longer access the file and the system releases the space the file
occupied on the disk for use by another file (i.e. the file is deleted).

To delete a file. you must have execute and write access permission to the
parent directory of the file, but you do not need read or write access
permission to the file itself. If you are running rm from a terminal (i.e.
rm's standard input is coming from a terminal) and you do not have write
access permission to the file, rm displays your access permission and waits
for you to respond. If you enter "y" or "yes", rm deletes the file;
otherwise it does not. 1If the standard input is not coming from the
terminal, rm deletes the file without question.

OPTIONS FOR THE RM COMMAND
There are three options to the rm command:

-f (force) This option causes rm to remove files for which you do not have
write access permission, without asking for your consent. It can
also be used to override protections given by the RMEXTS variable,
which is described in the section "Notes on the rm command".

-i (interactive) This option causes rm to ask you before removing each file.
If you use the -r option with this option. rm also asks you before
examining each directory. When you use the -i option with the *
wildcard, rm can delete files with characters in their filenames that
prevent you from deleting the files by other means.

-r (recursive) This option causes rm to delete the contents of the specified
directory and the directory itself. Use this option cautiously.

ARGUMENTS FOR THE RM COMMAND

The arguments to rm are a file-Tist that contains the 1list of files that rm
deletes. The 1ist can include wildcards. Because you can remove a large
number of files with a single command. use rm with wildcards cautiously. If
you are in doubt as to the effect of an rm command with a wildcard, use the
echo utility with the same wildcard first. echo displays the list of files
that rm will delete.

ADDITIONAL NOTES ON THE RM COMMAND

Because rm will happily delete your most important files without a
complaint, the local version of rm has a feature that allows you to
safeguard certain types of files. If, in your .login or .profile, you set
the environment variable "RMEXTS" to be a list of filename extensions, then
rm will always ask for confirmation before deleting filenames with those
extensions (unless the -f option is specified). Thus, if RMEXTS 1is set to
“c palhmss", then no file whose name ends in ".c", ".p". ".a", ".1",
".h", or ".mss" will be deleted without confirmation.

EXAMPLES OF THE RM COMMAND

The following command lines delete files. both in the current working
directory and in another directory.

253

254 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

$ rm memo
$ rm letter memol memo?
$ rm /usr/jenny/temp

The following command deletes the directory "useless" and all its contents,
including the contents of any subdirectories. It should only be used if you
are absolutely positive you want to delete all those files.

$ rm -r useless

THETWO UNIX MANUALS

D.9. The sort command: standard UNIX manual

SORT(1) UNIX Programmer's Manual SORT(1)

NAME
sort - sort or merge files

SYNOPSIS
sort [-mubdfinrtx] [+posl [-pos2]] ... [-o name] [
-T directory] [name] ...

DESCRIPTION
Sort sorts Tlines of all the named files together and writes
the result on the standard output. The name '-' means the

standard input. If no input files are named, the standard
input 1is sorted.

The default sort key is an entire line. Default ordering is
lexicographic by bytes in machine collating sequence. The
ordering is affected globally by the following options, one
or more of which may appear.

b Ignore leading blanks (spaces and tabs) in field com-
parisons.
d "Dictionary’ order: only letters, digits and blanks are

significant in comparisons.
f Fold upper case letters onto lower case.

i Ignore characters outside the ASCII range 040-0176 in
nonnumeric comparisons.

n An initial numeric string, consisting of optional
blanks, optional minus sign, and zero or more digits
with optional decimal point. is sorted by arithmetic
value. Option n implies option b.

r Reverse the sense of comparisons.
tx "Tab character’ separating fields is x.

The notation +posl -pos2 restricts a sort key to a field
beginning at posl and ending just before pos2. Posl and
pos2 each have the form m.n, optionally followed by one or
more of the flags bdfinr, where m tells a number of fields
to skip from the beginning of the line and n tells a number
of characters to skip further. If any flags are present
they override all the global ordering options for this key.
If the b option is in effect n is counted from the first
nonblank in the field: b is attached independently to pos2.
A missing .n means .0: a missing -pos2 means the end of the
Tine. Under the -tx option, fields are strings separated by
x; otherwise fields are nonempty nonblank strings separated
by blanks.

When there are multiple sort keys, later keys are compared
only after all earlier keys compare equal. Lines that oth-
erwise compare equal are ordered with all bytes significant.

255

256 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

These option arguments are also understood:

c Check that the input file is sorted according to the
ordering rules; give no output unless the file is out

of sort.
m Merge only, the input files are already sorted.
0 The next argument is the name of an output file to use

instead of the standard output. This file may be the
same as one of the inputs.

T The next argument is the name of a directory in which
temporary files should be made.

u Suppress all but one in each set of equal lines.
Ignored bytes and bytes outside keys do not participate
in this comparison.

Examples. Print in alphabetical order all the unique spel-
lings in a 1ist of words. Capitalized words differ from
uncapitalized.

sort -u +0f +0 Tist

Print the password file (passwd(5)) sorted by user id number
(the 3rd colon-separated field).

sort -t: +2n /etc/passwd

Print the first instance of each month in an already sorted
file of (month day) entries. The options -um with just one
input file make the choice of a unique representative from a
set of equal lines predictable.

sort -um +0 -1 dates

FILES
/usr/tmp/stm*, /tmp/* first and second tries for temporary
files

SEE ALSO
uniq(1l), comm(1), rev(1), join(1)

DIAGNOSTICS
Comments and exits with nonzero status for various trouble
conditions and for disorder discovered under option -c.

BUGS
Very long lines are silently truncated.

THE TWO UNIX MANUAILS
D.10. The sort command: Sobell/ACRONYM Version

sort: Sort and/or merge files
Format: sort [options] [field-specifier-1ist] [file-list]

Options: -b (blanks) ignore leading blanks
-C (check) check for proper sorting only
-d (dictionary) igrore nonalphanumerical and blank characters
-f (fold) sort uppercase letters as though they were lowercase
-m (merge) merge only, assume sorted order
-n (numeric) minus signs and decimal points take on their

arithmetic value (implies -b)
-0 (output) must be followed by output filename
-r (reverse) reverse sense of sort
-tx (tab) x is input field delimiter
-u (unique) do not display a repeated line more than once

Arguments: field-specifier-1ist specifies input fields by pairs of pointers
as +f.c -f.c where f is the number of fields to skip and ¢ is the
number of characters to skip.

SUMMARY OF THE SORT COMMAND

The sort utility sorts and/or merges one or more text files in sequence.
When you use the -n option, sort performs a numeric sort.

Sort takes its input from files specified on the command 1ine or from the
standard input. Unless you use the -o option, output from sort goes to the
standard output.

OPTIONS FOR THE SORT COMMAND

If you do not specify an option. sort orders the file in the machine
collating (ASCII) sequence. You can embed options within the
field-specifier-1ist. The options are:

-b (ignore Teading blanks) Blanks (TAB and SPACE characters) are
normally field delimiters in the input file. Unless you use
this option, sort also considers leading blanks to be part of the
field they precede. This option causes sort to consider multiple
blanks as field delimiters, with no intrinsic value, so that sort
does not consider these characters 1in sort comparisons.

-C (check only) This option causes the sort to check to see that the
file is properly sorted. sort does not display anything if
everything is in order. sort displays a message if the file is not
in sorted order.

~d (sort in dictionary order) This option causes sort to ignore all
characters that are not alphanumeric characters or blanks.
Specifically, sort does not consider punctuation and CONTROL
characters.

-f (fold uppercase into lowercase) This option causes sort to consider
all uppercase letters to be lowercase letters. wuse this option when
you are sorting a file that contains both uppercase and lowercase
text.

-m (merge) This option causes the sort to assume that multiple input

files are in sorted order. sort merges these files without verifying

that they are sorted.

-n (numeric sort) When you use this option, minus signs and decimal
points take on their arithmetic meaning and the -b option is implied.
sort does not order lines or sort fields in the machine collating
sequence, but rather in arithmetic order.

-0 (specify output file) You must place a filename after this opticn on
the command line. sort sends its output to this file instead of to
the standard output.

-r (reverse sense) This option reverses the sense of the sort (e.g., z

57

258 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

precedes a).

~-tx (set tab character) When you use this option, replace the x with the
character that is the field delimiter in the input file. This new
character replaces blanks, which become regular (nondelimiting)
characters.

-u (unique lines) This option causes sort to output repeated lines only
once. sort outputs lines that are not repeated as it would without
this option.

ARGUMENTS FOR THE SORT COMMAND

The arguments to the sort program are all optional; they can include a
field-specifier list and/or a file-list. The field-specifier-list selects
one or more sort-fields within each line to be sorted. The sort utility
uses the sort-fields to sort the lines. (See "Detailed Description of the
sort Command" for more details.) The file-1ist contains pathnames of

one or more plain files that contain the text to be sorted. sort sorts and
merges the files unless you use the -m option, in which case, sort only
merges the files.

DETATLED DESCRIPTION OF THE SORT COMMAND

In the following description, a line-field is a sequence of characters on a
line in the input field. These sequences are bounded by blanks and the
beginning and end of the line. Line-fields are used to define a sort field.

A sort-field is a sequence of characters that sort uses to put lines in
order. The description of a sort-field is based on line-fields. A
sort-field can contain part or all of one or more line-fields. In the
following line,

Toni Barnett 95020
the three line-fields are "Toni", " Barnett”, and " 95020".
Possible sort-fields in this line might be "Barnett”. "020"., or any other

portion of a line.

The field-specifier-1ist contains pairs of pointers that define subsections
of each line (sort-fields) for comparison. If you omit the second pointer
from a pair, sort assumes the end of the line. A pointer is in the form
"+f.c" or "-f.c". the first of each pair of pointers begins with a plus
sign, while the second begins with a hyphen.

You can make a pointer (f.c) point to any character on a line. The f is the
number of line-fields you want to skip, counting from the beginning of the
line. The ¢ is the number of characters you want to skip, counting from the
end of the last line-field you skipped with the f.

The -b option causes sort to count multiple leading blanks as a single
line-field delimiter character. If you do not use this option, sort
considers each leading blank to be a character in the sort-field, and
includes it in the sort comparison.

You can specify options that pertain only to a given sort-field by
immediately following the field specifier by one of the options b, d. f, i,
R, or r. In this case, you must NOT precede the options with a hyphen.

If you specify more than one sort-field, sort examines them in the order
that you specify them on the command line. If the first sort-field of
two-lines is the same, sort examines the second sort-field. If these are
again the same, sort looks at the third field. This process continues for
all the sort-fields you specify. If all the sort-fields are the same, sort
examines the entire 1line. ‘

If you do not use any options or arguments, the sort is based on entire

THE TWO UNIX MANUALS

lines.
EXAMPLES OF THE SORT COMMAND

The following examples assume that a file named list is in the working
directory. A1l the blanks are SPACEs, not TABs.

$ cat 1list

Tom Winstrom 94201
Janet Dempsey 94111
Alice Macleod 94114
David Mack 94114
Toni Barnett 95020
Jack Cooper 94072
Richard MacDonald 95510
$

The first example demonstrates sort without any options or arguments, other
than a filename. sort sorts the file on a line-by-line basis. If the first
characters on two lines are the same, sort looks at the second characters to
determine the proper sorted order. If the second characters are the same,
sort looks at the third characters. This process continues until sort finds
a character that differs between the Tines. If the lines are identical, it
doesn’t matter which one sort puts first. The sort command in this example
only needs to examine the first three letters (at most) of each line. Sort
displays a list that is in alphabetical order by first name.

$ sort list

Alice Macleod 94114
David Mack 94114
Jack Cooper 94072
Janet Dempsey 94111
Richard MacDonald 95510
Tom Winstrom 94201
Toni Barnett 95020

sort can skip any number of Tine-fields and characters on a line before
beginning its comparison. Blanks normally separate one line-field from
another. The next example sorts the same list by last name, the second
line-field. The +1 argument indicates that sort is to skip one line-field
before beginning its comparison. It skips the first-name field. Because
there is no second pointer, the sort-field extends to the end of the line.

Now the 1ist 1is almost in last name order, but there 1is a problem with "Mac".

$ sort +1 list

Toni Barnett 95020
Jack Cooper 94072
Janet Dempsey 94111
Richard MacDonald 95510
Alice MaclLeod 94114
David Mack 94114
Tom Winstrom 94201

In the example above, MacLeod comes before Mack. sort found the sort-fields
of these two files the same through the third JTetter ("Mac"). Then it put L
before k because it arranges lines in the order of ASCII (or other)
character codes. In this ordering, uppercase letters come before lowercase
ones and therefore L comes before k.

The -f option makes sort treat uppercase and lTowercase letters as equals,
and thus fixes the problem with MaclLeod and Mack.

$ sort -f +1 list
Toni Barnett 95020
Jack Cooper 94072

259

260 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

Janet Dempsey 94111
Richard MacDonald 95510
David Mack 94114
Alice Macleod 94114
Tom Winstrom 94201

The next example attempts to sort 1list on the third line-field, the zip
code. sort does not put the numbers im order, but puts the shortest name
first in the sorted list and the longest name ltast. With the argument of
+2, sort skips two line-fields and counts the SPACEs after the second
line-field (last name) as part of the sort-field. The ASCII value of a
SPACE character is less than that of any other printable character, so sort
puts the zip code that is preceded by the greatest number of SPACEs first,
and the zip code that is preceded by the fewest SPACEs last.

$ sort +2 list

David Mack 94114
Jack Cooper 94072
Tom Winstrom 94201
Toni Barnett 95020
Janet Dempsey 94111
Alice MaclLeod 94114

Richard MacDonald 95510

The -b option causes sort to ignore leading SPACEs. With the -b option, the
zip codes come out in the proper order (see following example).

When sort determines that MacLeod and Mack have the same zip code, it
compares the entire lines. The Mack/MacLeod problem crops up again because
the -f option is not used.

$ sort -b +2 list

Jack Cooper 94072
Janet Dempsey 94111
Alice Macl.eod 94114
David Mack 94114
Tom Winstrom 94201
Toni Barnett 95020

Richard MacDonald 95510

The next example shows a sort command that not only skips line-fields, but
skips characters as well. The +2.3 causes sort to skip two line-fields and
then skip three characters before starting its comparisons. The sort-field
is, and the 1list below is sorted in order of, the last two digits in the zip
code. (The -f option is included to take care of MaclLeod and Mack.)

$ sort -f -b +2.3 list

Tom Winstrom 94201
Richard MacDonald 95510
Janet Dempsey 94111
Alice Macleod 94114
David Mack 94114
Toni Barnett 95020
Jack Cooper 94072

The next example uses a different file, 1ist2, to demonstrate the -n option.
This file contains text that represents numbers and includes minus signs and
decimal points.

$ cat 1list?
.7

1.1

-11

10.0

0.5

THETWO UNIX MANUALS

-1.1

When sort processes this list of numbers, it sorts them according to the
machine collating sequence. They are not put in arithmetic order.

$ sort 1list?

The -n option causes sort to put the list of numbers -- including symbols --
in its proper, arithmetic sequence.

$ sort -n list?
-11
-1.1

The final sort example demonstrates a more complex use of options and
arguments. cat displays the "words" file used in this example.

$ cat words
apple
pear
peach
apple
Apple
Pear
prune
Plum
peach
orange
pear
plum
pumpkin
$

The following sort command sorts "words" and displays only one copy of each
Tine (-u option). The arguments cause sort to evaluate each line twice.

$ sort ~u +0f +0 words
Apple
apple
orange
peach
Pear
pear
Plum
plum
prune
pumpkin

Just as the argument +1 causes sort to Skip one line-field, +0 causes sort
to skip zero fields; sort examines the first line-field.

The +0f argument causes sort to evaluate the first line-field through the
end of the line (the entire word) as though it were lowercase. The -f option
is used to fold uppercase into lowercase and is not preceded by a hyphen

61

262 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

because it follows a field specifier. The second argument, +0, evaluates
each word, differentiating between uppercase and lowercase letters. The
result is a Tist of all the words, in alphabetical order, differentiating
between upper- and lowercase letters, displaying only one copy of each word.

A BRIEF INTRODUCTION TO REGRI-SSION ANALYSIS 263

Appendix E
A Brief Introduction to Regression Analysis

In this appendix, [will outline the basic ideas of regression analysis as they are relevant to
interpreting the data presented in this thesis. This is not intended to scrve as a general introductory
text on regression analysis; for that, any good introductory statistics textbook should suffice. Rather,

the idea here is to present an intuitive picture of regression as it is used in this thesis.

E.1. Simple regression

Often, in collecting data regarding a simple phenomenon, the data will suggest an underlying trend
that is hard to define directly from the data. In this picture, for example, there appears to be a clear

relationship between the x and y values graphed:

201
18} ¥
16} ¥
14} t

12}
101

N A O R
++

' i I i I i i I J

O 1 23456 7 8 9 10

It seems likely, looking at this data, that there is a direct relationship between the two variables
graphed. It is generally useful to express this relationship as a function Y =f{x), but it is not always
obvious what that function is. Regression is a technique which, given a certain class of functions.
finds the one which "best fits” the data. In particular, linear regression, which is most commonly
used, only examines those functions of the form Y = ¢ + kx, so that the purpose of the regression

process is to sclect the best values for the constants ¢ and k.

204 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTIEMS

The process by which this selection is made is called the method of least squares, which is explained
in any standard statistics textbook. Suffice it to say that the technique finds the best /inear equation
for the data, where “best” means that the sum of the squares of the differences on the y axis are
minimized. In the following picture, the data shown previously is shown along with a graph of its

regression cquation:

207
18t
161

12}
10t

N O D

123456 7 8 9 10

o}

Here. the cquation of the regression line is simply y = 2x.

The idea behind this method is that the regression equation approximates the “real”” underlying
relationship between the variables, which can be obscured by experimental error and variation in the
data. The danger of using this technique is that regression equations can be arbitrarily poor fits for
the data; even if there is no real relationship, the regression equation will find a “best” relationship.
However, the standard deviation of a coefficient in the regression equation is a simple and reliable
measure of the significance of the effect of the associated independent variable. In trying lo
understand whether or not a given coefficient’s value indicates a significant cffect, we must compare
the size of the coefficient with its standard deviation. The ratio of the coefficient to the standard
deviation is know as the 7-ratio. The larger the T-ratio, the more confident we can be about the
significance of the effect observed. For example, a T-ratio of 1.95 or more indicates a confidence
level of 95% or more; that is, the chances of the observed effect being due mercly to chance

(coincidence) is less than 1 in 20.

A BRIEF INTRODUCTION TO REGRESSION ANALYSIS 265
E.2. Multivariate Regression

In genuinely interesting applications, researchers rarely study phenomena so simple that a single
dependent variable and a single independent variable are the only ones involved. Instead, they will
typically have several independent variables and onc or more dependent variables. In the discussion
that follows, we will assume only one dependent variable, y, and n independent variables, Xp. X

5o o
x- The goal of the lincar regression analysis is to produce an cquation of the form:

Y =¢C+ X +Cxy o+ C X

The method used here is completely analogous to the two-dimensional method outlined in the
previous section, except that the computation is more difficult. Again, the values of the constants c
are selected to best model the data, and their standard deviations provide a measure of their

significance.

E.3. Indicator Variables

The situation becomes slightly further complicated when one of the variables observed does not
take on continuous numeric values. For example, in the experiments described in this thesis, one of
the independent variables was the subject; obviously, different subjécts performed differently, and it
was important to be able to differentiate the effect of subject variation from the cffect of help system
variation. Unfortunately, simply giving cach subject a numeric valuc such as “17 or 17" is unlikely

to lead to a meaningful regression equation, given that the numbers assigned are arbitrary.

Instead, we can create indicator variables for each of the different subjects. Thus, in an experiment
with four subjects, we might create four indicator variables S,, S,, S and S,. For cach subject, one
indicator variable will be 1 and the rest will be 0. Thus, for example, for the third subject. S, S, and
S 4 would be 0. while S3 would be 1. Given that only one of these four variables is non-zero, the
coefficient of cach of these variables in the final regression equation is an indication of the effect of
the relevant discrete condition -- in this case, the effect of a certain subject -- on the dependent

variable.

For a very simple example, imagine an experiment in which we observe three people, John, Mary,
and Bill, cach cating two scoops of ice cream, chocolate and vanilla. If we let x, be an indicator
variable for John, X, for Mary, X3 for Bill, x 4 for chocolate, and Xg for vanilla, we might imagine that
an cquation of the following form might predict the time t that it takes an individual to eat a scoop of

ice crecam:

206 THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTEMS

t= Co + CiXy + CyXy + c3x3 + CyXy + c5x5

However, for technical reasons, this is not precisely the way such analyscs are conducted. [t turns
out that, to obtain significant and mcaningfu.l results, not all of the indicator variables should be
included in the regression equation; rather, one of each sct of indicator variables should be omitted to
allow the analysis a sufficient number of degrees of frecedom. Thus, more realistically, a regression

cquation for the experiment just described might look more like this:
t= CO + % + CyXy + CyXq

Here, the indicator variable X, is 1 if the subject is John, and X, is 1 if the subject is Mary; if both X
and x, arc zero, the subject is Mary. Similarly, X, is 1 for chocolate and 0 for vanilla. In general, in
such an equation, the constant < reflects the predicted value of the dependent variable when all of
the omitted indicator variables arc 1. In this case, < is the predicted time it would take for Bill to eat
vanilla ice cream. A complete table of the possible values of the variables and their meaning is found
in the Table E-1. Note that certain indicator variables are mutually exclusive; it is impossible for a

subject to be both John and Mary, for example, regardless of what flavor the ice cream is.

Table E-1: Mcanings of Indicator Variables in Toy Regression Example

X X, Xy Meaning

0 0 0 Bill eats vanilla.

0 0 1 Bill cats chocolate.

0 1 0 Mary eats vanilla.

0 1 1 Mary eats chocolate.
1 0 0 John ecats vanilla.

1 0 1 John eats chocolate.

1 1 0 Impossible situation.
1 1 1 Impossible situation.

A BRIEF INTRODUCTION TO REGRESSION ANALYSIS 267

E.4. Reading the regression results from Chapter 7

In several different tables in Chapter 7, the results of a multivariate regression analysis are
displayed. The first part of each of these tables is the regression equation, which should be
interpreted as described above. For each of these equations, the bascline help system, the first
subject, and the first task do not have indicator variables; thus the constant in the equation predicts
the log time for the first subject using the first task and the first help system. (Log time is used

instead of actual time to reduce the effect of minor variations.)

After this equation, which summarizes the regression results, comes a table of values with one line
for cach of the regression variables. Each such line gives the variable, its meaning as an indicator
variable, its cocfficient from the regression equation, and the “T ratio”. The T ratio is simply the
regression coefficient divided by its standard deviation. 'This ratio gfives a measure of the signficance
of the coefficient; anything with absolute value over 1.95 is significant with a confidence level p<.05
(95%). Thus, if the T ratio is over 1.95 it is reasonably certain that the condition indicated by that
variable significantly increases the dependent variable -- in this case, the time to exccute the task. (A
T ratio over 1.65 indicates a confidence level p<.1 (90%), a rather less reliable indicator.) Similarly, a

T ratio less than -1.95 indicates a significant decrease in task execution time.

The regression tables presented in this thesis show only the comparisons in which the indicator
variable omitted is the man/key (baseline) help system. This raises the question of the comparability
of the other help systems. Table 7-3, on page 89, for example, shows the following T-ratios for the

coefficients corresponding to the other help systems:

System T-ratio Coeficient
Hybrid -1.53 -0.2675
ACRONYM -215 -(.3668
Tutor -3.52 -0.6095
English -1.65 -0.3010

This suggests that all of the systems are significantly better than the baseline system. However, the
much larger T-ratio for the human tutor, -3.52, suggests that the tutor is significantly better than the
other systems as well. The regression analysis as presented does NO'T, however, prove that this is the
case. but merely suggests it. However, it turns out that the trends suggested in this manner are
generally borne out (for reasonable data) by further analysis. In this case, for example. running the

regression with the human tutor as the omitted indicator variable yields the following T-ratios:

System T-ratio Cocficient
Baseline 3.52 0.6095

268 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

Hybrid 1.39 0.3420
ACRONYM 1.00 0.2427
English 1.27 0.3085

These T-ratios indicate a likely difference, though not as strongly as is suggested by the differences
in the first table. The difference in significance is entircly an artifact of the experimental design.
Remember that the T-ratio is simply the ratio of the coefficicnt to the standard deviation. Although
the cocfficients interact strictly lincarly -~ that is, the coefficient for ACRONYM, 0.2427, in the
sccond table, is the difference between the ACRONYM and Tutor coefficients in the previous table
-- the standard deviations do not. 'This is because there is more data for the bascline system
(man/key) than for any other systcin, given its use as a bascline in the experiments. Since there is
more data available for man/kcy than for other systems, it is natural that confidence levels be
somewhat higher for those comparisons that involve it than for those that do not. Also, comparing,
for example, ACRONYM to the tutor involves an extra bit of indirection in the data; no single

subject actually used both of those two systems, so the comparison is inherently somewhat riskier.

Nonetheless, the different forms of the regression analysis tend to back up the conclusions of the
initial analysis, albeit at slightly reduced levels of significance. For example, the most shaky finding,
in this analysis, is that the human tutor is better than ACRONYM. This cnﬁclusi(m has a probability
of just over 1 chance in 4 of being incorrect. It would very likely be made firmer by increasing the
numbecr of subjects studied or by running subjects with a more direct comparison between the two

systems.

The regression analysis reported in this thesis was conducted using the MINITAB statistical
analysis program [104]. For more information on regression analysis in gencral, consult an

appropriate textbook.

BIBLIOGRAPHY 269

Bibliography

1] Ambrozy, Denise.
On Man-Computer Dialogue.
International Journal of Man-Machine Studies 3(4):375-383, 1971.

[2] Anderson, John R.
I.earning to Program.
year unknown.
[3] Anderson, John R,, Robert Farrell, and Ron Sauers.

Learning to Plan in LISP.
Technical Report, Carnegie-Mellon University Department of Psychology, 1982.

[4] Ball, E. and P. Hayes.
A Test-Bed for User Interface Designs.
In Proceedings, Human Factors In Computer Systems. March, 1982.

15] Bannon, I iam and Clairc O’Malley.
Problems in Evaluation of Human-Computer Interfaces: A Case Study.
HM1I Project, University of California at San Diego, March, 1984,

[6] Bates, Madeleine, and John Vittal.
Tools for the Development of Systems for Human Factors Experiments: An
Example for the SSA.
IEEE Transactions on Systems, Man, and Cybernetics SMC-12(2):133-148,
March/April, 1982.

M Black, J. and T. Moran.
[.earning and Remembering Command Names.
In Proceedings, Human Factors In Computer Systems. March, 1982.

[8] Borenstein, Nathaniel.
The Evaluation of Text Editors: A Critical Review of the Roberts and Moran
Methodology Based on New Experiments.
In Procedings of CHI '85. 1985.

[9] Borenstein, Nathaniel and James Gosling.
UNIX Emacs as a Test-bed for User Interface Design.
1985.
in preparation.

270

[10]

(1]

(12]

[13]

(14]

(13]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

THE DESIGN AND EVALUATION OF ON-LINE HELP SYSTUEMS

Bott, Ross A.
A Study in Complex Learning: Theory and Methodologies.
PhD thesis, U. C. San Dicgo, March, 1979.

Bramwell, Bob.
BROWSE: An On-linc Manual and System Without an Acronym,
SIGDOC Newsletter , 1984,

Bramwell, Bob.

Browsing Around A Manual.

In Canadian Information Processing Society Session ‘84 Proceedings, pages 438-451.
1984.

Campbell, Donald T., and Julian C. Stanley.
Experimental and Quasi- Experimental Designs for Research.
Houghton Mifflin Company, 1966.

Card, Stuart K., Thomas P. Moran, and Allen Newell.
The Psychology of Human-Computer Interaction.
Lawwrence Erlbaum Associates, Hillsdale, NJ, 1983.

Cherry, Lorinda L.
Computer Aids for Writers.
SIGPI AN Notices :62-67, June, 1981.

Cherry, L. I.. and W. Vesterman.
Writing Tools -- The STYLE and DICTION Programs.
year unknown.

Christensen, Margaret. '

Background for the Design of an Expert Consulting System for On-line Help.
October, 1984.

Thesis proposal, Temple University.

TOPS-10 On-Line Help System
year unknown.
HLP:HELP.HLP on CMU-CS-A.ARPA.

CMU LISP On-line help
year unknown.
on CMU-CS-A.ARPA.

Personal Computing on the Vic-20: A Friendly Computer Guide
Commodore Electronics, Ltd., 1982.

Coutaz, Joelle.
A Framework for the SPICE Help System.
1985.

TOPS-20 User's Guide
Seventh edition, Digital Equipment Corporation, Marlboro, Massachusetts, 1980.

BIBLIOGRAPHY

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

271

Doherty, Walter J.
System Performance and user Behaviour.
IBM Thomas J. Watson Rescarch Center. Yorktown Heights, NY, 1981.

Doherty, Walter J. and R. P. Kclisky.
Managing VM/CMS Systems for User Effectiveness.
[BM Systems Journal 18(1), 1979.

Doherty, Walter J., and Arvind J. Thandhani.
The Economic Value of Rapid Response Time.
IBM Thomas J. Watson Research Center. Yorktown Heights, NY, year unknown.

Donner, Marc D. and David Notkin.
Flexible Systems: Customization and Extension.
1985.

Draper, Stephen W,
The Nature of Expertise in UNIX.
HMI Project, University of California at San Diego, March, 1984.

Duffy, Thomas M., and Paula Kabance.
Testing a Readable Writing Approach to Text Revision.
Journal of Educational Psychology 74(5):733-748, 1982.

Dunsmore, H. E.
Designing an Interactive Facility for Non-Programmers.
In Proceedings of ACM-30, pages 475-483. 1980.

Durham, lvor.
The CMU Plot Manual
Carnegie-Mellon University Computer Science Department, 1981.

Durham, Ivor, David A. Lamb, and James B. Saxe.
Speclling Correction in User Interfaces.
Communications of the ACM 26:764-773, 1983.

Dzida, W., S. Herda, and W. D. Itzfeldt.
User-Perceived Quality of Interactive Systems.
IEEL Transactions on Sofiware Engineering SE-4(4), 1978.

Felker, Daniel B., Frances Pickering, Veda R. Charrow, V. Melissa Holland, and
Janice C. Redish.

Guidelines for Document Designers.

American Institutes for Research, Washington, DC, 1981.

Fenchel, Robert S.
Integral Hélp for Interactive Systems.
PhD thesis, UCLA, 1980.

Fenchel, Robert S. and Gerald Estrin.

Self-Describing Systems Using Integral Help.

ILET Transactions on Systems, Man. and Cybernetics SMC-12(2):162-167,
March/April, 1982.

272 THE DESIGN AND EVALUATION O ON-LINE HELP SYSTEMS

136] Feyock, Stefan.
Transition Diagram-based CAI/HELP Systems.
International Journal of Man-Machine Studies 9:399-413, 1977.

371 Finin, Timothy W.
Providing Help and Advice in Task-Oriented Systems.
In [JC Al 83 Proceedings, pages 176-178. 1983.

{38] Fischer, Gerhard, Andreas l.emke, and Thomas Schwab.
Knowledge-based Help Systems.
In Proceedings of CHI ‘85, pages 161-167. 1985.

[39] Foster, Mike.
private communication.
1981.

[40] Genesereth, Michael.
An Automated Consultant for MACSYMA An Automated Consultant for
MACSYMA.
In IJCAI 77 Proceedings, pages 789. 1977.

[41] Girill, T. R. and Clement H. Luk.
DOCUMENT: An Interactive, Online Solution to Four Documentation Problems.
Communications of the ACM 26(5):328-337, May, 1983.

[42] Glasner, Ingrid D., and Philip J. Hayes.)
Automatic Construction of Explanation Networks for a Cooperative User Interface.
Technical Report CMU-CS-81-146, Carncgie-Mellon University Department of
Computer Science, November, 1981.

[43] Glushko, R. 1., and M. H. Bianchi.
On-line Documentation: Mechanizing Development, Delivery, and Use.
The Bell System Technical Journal 61(6):1313-1323, July-August, 1982.

[44] Gosling, James.
UNIX Emacs Manual
1983.
[45] Gould, J. and N. Grischkowsky.

Doing the Same Work with Hardcopy and with CRT Terminals.
Human Factors 26(3), 1984.

[46] Haas, Christina, and John R. Hayes.
Reading on the Computer: A Comparison of Standard and Advanced Computer
Display and Hard Copy.
Technical Report CDC Tech Report # 7, Carnegic-Mellon University
Communications Design Center, February, 1985.

[47] Haas, Christina, and John R. Hayes.
Effects of Text Display Variables in Reading Tasks: Computer Screens vs. Hard
Copy.
‘Technical Report CDC Tech Report # 3, Carnegic-Mellon University
Communications Design Center, March, 1985.

BIBLIOGRAPIY

[48]

[49]

[501

(51

[52]

(53]

(54]

53]

[56]

[57]

(58]

[39]

[60]

273

Halasz, F., and T. Moran.
Analogy Considered Harmful.
In Proceedings, Human Factors In Computer Systems. March, 1982.

Hanson, Stephen Jose, Robert E. Kraut, and James M. Farber.
Interface Design and Multivariate Analysis of UNIX Command Use.
ACM Transactions on Office Information Systems 2(1):42-57, March, 1984.

Hayes, Philip J.
Uniform Help Facilities for a Cooperative User Interface.
In National Computer Conference Proceedings. pages 469-474. AFIPS, 1982.

Hayes. Phillip J.

FExecutable Interface Definitions Using Form-Based Interface Abstractions.

Technical Report CMU-CS-84-110, Carnegie-Mellon University Computer Science
Department, March, 1984.

Hayes, Phil, Rick Lerner, and Pedro Szekely.
Cousin Manual for End Users.
1983,

Haycs, Phillip J., Pedro A. Szekely, and Richard A. Lerner.

Design Al ternatives for User Interface Management Systems Based on Experience
with COUSIN.

In CHI 85 Proceedings. April, 1985.

Heckel, Paul.
The I:lements of Friendly Software Design.
Warncer Books, 1984.

Houghton, Raymond C., Jr.
Online Help Systems: A Conspectus.
CACM 21(2):126-133, February, 1984.

Howe, Adele.

HOW? A Customizable, Associative Network Based Help Facility.
1983.

Senior Design Project.

Huck, Schuyler W. and Howard M. Sandler.
Rival Hypotheses: Alternative Interpretations of Data Based Conclusions.
Harper & Row, New York, 1979.

IBM Virtual Machine/System Product: CMS Primer
First edition, IBM, 1982.

System Productivity Facility Dialog Management Services
IBM, yecar unknown.

Jacob, Robert J. K.
Using Formal Specifications in the Design of a Human-Computer Interface.
CACA26(3), April, 1983.

274 THE DESIGN AND EVALUATION OFF ON-LINE HELP SYSTEMS

[61] Kelley, J. F.
An Interface Design Methodology for User-friendly Natural Language Office
Information Applications.
ACM Transactions on Office Information Systems 2(1), March, 1984.

[62] Kennedy, T. C. S.
The Design of Interactive Procedures for Man-Machine Communication.
International Journal of Man-Machine Studies 6(3):309-334, 1974.

[63] Kennedy, T. C. S.
Some Behavioral Factors Affecting the Training of Naive Users of an Interactive
Computer System.
International Journal of Man-Machine Studies 7(6):817-834, 1975.

[64] Kernighan, Brian W, and John R. Mashey.
The UNIX Programming Environment.
Computer :12-22, April, 1981.

[65] Kernighan, Brian ' W. and P, J. Plauger.
Software Tools.
Addison-Wesley Publishing Co., Reading, Massachusetts, 1976.

[66] Kunze, John.
The Berkeley UNIX Help System.
1984,
on-line manual entry.

[67] Lamb, David Alex.
RdMail Message Management System: User’s Guide and Reference
Sceventh edition, CMU Computer Science Department, Pittsburgh, 1982,

[68] Lampson, Butler.
Hints for Computcr System Design.
IEEE Software , January, 1984.

[69] Lang, Kathy, Robin Auld, and Terry Lang.
The Goals and Methods of Computer Users.
International Journal of Man-Machine Studies 17(4):375-399, 1982.

[70] Loo, Robert.
Individual Differences and the Perception of Traffic Signs.
Human Factors 20(1):65-74, 1978.

[71] Lowerre, B. T.
The HARPY Speech Recognition System.
Technical Report, Carnegie-Mellon University Computer Science Department,
April, 1976.

[72] Mack, Robert .., Clayten H. Lewis, and John M. Carroll.
LLearning to Use Word Processors: Problems and Prospects.
ACM Transactions on Office Information Systems 1(3):254-271, July, 1983.

BIBLIOGRAPHY

(73]

[74]

(73]

[76]

(77

[79]

[80]

[81]

[82]

(83]

[84]

275

Magers, Celeste S.
An Experimental Evaluation of On-line Help for Non-Programmers.
In CHI 83 Proceedings, pages 277-281. 1983,

Mantei, Marilyn and Nancy Haskell.
Autobiography of a First-"Time Discretionary Microcomputer User.
In CHI 83 Proceedings, pages 286-290. 1983,

Moran, Thomas P.

‘The Command lLanguage Grammar: A Representation for the User Interface of
Interactive Computer Systems.

International Journal of Man-Machine Studies 15(1):3-50, 1981.

Moran, Thomas P.
An Applied Psychology of the User.
ACM Computing Surveys 13(1), March, 1981.

Mudge, J. C..
Human Factors in the Design of a Computer- Aided Instruction System.
PhD thesis, University of North Carolina at Chapel Hill, June, 1973.

Nicholson, Raymond S.

Why Interactive Computing Systems are Sometimes not Used by People who
Might Benefit from Them.

International Journal of Man-Machine Studies 15:469-483, 1981.

Norcio, A.
Indentation, Documentation, and Programmer Comprehension.
In Proceedings, Human Factors In Computer Systems. March, 1982.

Norman, D.
The Truth About UNIX: The User Interface is Horrid!
year unknown.

O’Malley, C., P. Smolensky, 1.. Bannon, E. Conway, J. Graham, J. Sokolov, and
M. 1.. Monty.

A Proposal for User Centered System Documentation.

In CHI 83 Proceedings, pages 282-285. 1983.

Palay, Andrew I., and Mark S. Fox.
Browsing Through Databases.
Information Retrieval Research.
Butterworth and Co., Ltd., London, 1981.

Peters. Tom.
private communication.
1984.

Posncr, John, Jeff Hill, Steven G. Miller, Ezra Gottheil, and Mary Lynn Davis.
Lotus 123 User’s Manual
Lotus Development Corporation, 1983.

276

[85]

(86]

(87

(88]

[89]

[90]

91

[92)

[93]

[94]

[951

[96]

THE DESIGN AND EVALUATION O1I' ON-LINE HELP SYSTEMS

Price, Lynne A.

Thumb: An Interactive Tool for Accessing and Maintaining Text.

IEEE Transactions on Systems, Man, and Cybernetics SMC-12(2):155-161,
March/April, 1982. '

Rashid, R. F. .

An Inter-process Communication Facility for UNIX.

Technical Report CMU-CS-80-124, Carnegie-Mcllon University Computer Science
Department, February, 1980.

Reddy, D. R. and the Computer Science Department Speech Group.

Working Papers in Speech Recognition 1V -- The Hearsay-11 System.

"Technical Report, Carnegic-Mellon University Computer Science Department,
February, 1976.

Rcisner, Phyllis.
Human Factors Studies of Database Query [.anguages: A Survey and Assessment.
ACM Computing Surveys 13(1), March, 1981.

Relles, Nathan and Lynne A. Price.

A User Interface for Online Assistance.

In Procedings of the Fifth Conference on Sofiware Engineering, pages 400-408.
1981.

Relles, Nathan, and Norman K. Sondheimer.
A Unified Apporach to Online Assistance.
In National Computer Conference Proceedings, pages 383-387. AFIPS, 1981.

Rich, Elainc.
Programs as 12ata for their Help Systems.
In National Computer Conference Proceedings, pages 481-485. AFIPS, 1982.

Rich, Elaine.
Users Are Individuals: Individualizing User Models.
International Journal of Man-Machine Studies 18(3):199-214, 1983.

Roberts, Teresa L.
Evaluation of Computer Text Editors.
PhD thesis, Stanford University, 1979.

Roberts, T. and T. Moran.
Evaluation of Text Editors.
In Proceedings, Human Factors In Computer Systems. March, 1982.

Roberts, Teresa 1. and Thomas P. Moran.
The Evaluation of Text Editors: Methodology and Empirical Results.
CACM |, April, 1983.

Robertson, C. Kamila.

Expcrimental Evaluation of an Interactive Information Processing Aid for an
Emergency Poison Center.

Behavioral Science 26, 1981,

BIBLIOGRAPHY

(971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

277

Robertson, C. Kamila, and Robert Akscyn.

Experimental Evaluation of Tools for Teaching the ZOG Frame Lditor.

Technical Report CMU-CS-82-122, Carncegic-Mellon University Department of
Computer Science, May, 1982.

Robertson, C. Kamila, and Allen Newell.

Experimental Evaluation of Five Techniques for Teaching for the ZOG Frame
Editor.

1983.

Robertson, C. Kamila, Donald L. McCracken, and Allen Newell.
Experimental Evaluation of the ZOG Frame Editor.
Technical Report CMU IR 81-112, Carnegic-Mcllon University, 1981.

Robertson, G., D. McCracken, and A. Newell.
The 220G Approach to Man-Machine Communication.
Technical Report CMU-CS-79-148, Carnegic-Mecllon University, October, 1979.

Robertson, G.. D. McCracken, and A. Newell.
The ZOG Approach to Man-Machine Communication.
International Journal of Man-Machine Studies 14(4):461-488, 1981.

Rosenberg, J.
Evaluating the Suggestiveness of Command Names.
In Proceedings, Human Factors In Computer Systems. March, 1982.

Rothenberg, Jeff.

An lutelligent Tutor: On-line Documentation and Help for a Military Message
Service.

Technical Report [SI/RR-74-26, USC-ISI, May, 1975.

Ryan, Thomas Arthur.
Minitab Student Handbook
1976.

Scelza, Donald A.
The Shepherd File Management and Documentation System User Manual
CMU Computer Science Department, Pittsburgh, 1979.

Shafer, Steve.
Ci UNIX manual entry
1983.

Shneiderman, Ben.
Software Psychology.
Winthrop Publishers, Cambridge, Massachusetts, 1979.

Shnciderman, Ben.

Human lactors Issues of Manuals, Online Help, and Tutorials.

Technical Report CS-TR-1446, Department of Computer Science, University of
Maryland, September, 1984.

278

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

THE DESIGN AND EVALUATION OIF ON-1INI- HELP SYSTEMS

Shrager, Jeff, and Tim Finin.
An Expert System that Volunteers Advice.
In AAA1-82, pages 339-340. 1982.

Smith, Huston.
The Religions of Man.
Harper & Row, New York, 1958.

Smith, David Canficld, Charles Irby, Ralph Kimball, and Eric Harslem.
The STAR User Interface: An Overview.
In National Computer Conference Proceedings, pages 515-528. AFIPS, 1982.

Sobell, Mark.
A Practical Guide to the UNIX System.
The Benjamin/Cummings Publishing Company, Menlo Park, California, 1984.

Sondheimer, Norman K. and Nathan Relles.

Human Factors and User Assistance in Interactive Computing Systems: An
Introduction.

IEEL Transactions on Systems, Man, and Cybernetics SMC-12(2):102-107, March-
April, 1982.

Sproull, Lee S., Sara Kiesler, and David Zubrow.
Encountering an Alien Culture.

Journal of Social Issues , 1984.

in press.

Stallman, Richard M.
FEMACS Manual for TOPS-20 Users
MIT Al Laboratory, 1981,

Teitelman, Warren.
Interlisp Reference Manual
Xerox Palo Alto Rescarch Center, year unknown.

Temin, Aaron l.ehman.

The Question Answering Module in an Automated Natural Language Help System
for the Text-Formatter Scribe.

1982.

Thesis Proposal, University of Texas at Austin.

UNIX Programmer’s Manual

Seventh Virtual Vax-11 edition, Computer Science Division, Department of
Electrical Enginecring and Computer Science, University of California,
Berkeley, 1981.

Walker, Janet.
Symbolics Sage: A Documentation Support System.
In Proceedings IIEEF Spring CompCom 84. 1984,

BIBLIOGRAPHY

[120}]

[121]

[122)

[123]

[124]

[125]

279

Walker, Janet.

Implementing Documentation and Help Online.
1985.

CHI "85 Tutorial Notes.

Weinberg, Gerald M,
The Psychology of Computer Programming,
Van Nostrand Reinhold Co., New York, 1971,

Wilensky, Robert.
Talking to UNIX in English: An Overview of an On-line UNIX Consultant.
Al Magazine 5(1):29-39, Spring, 1984.

Wilson, F. Bright, Jr.
An Introduction to Scientific Research.
McGraw-Hill, New York, 1952.

Witten, lan H. and Bob Bramwell.
A System for Interactive Viewing of Structured Documents.
CACM 28(3), March, 1985.

Wood, W. G., and D. G. Martin,
Experimental Method,
The Athlone Press, I.ondon, 1974.

