PDF Download

') ACM pDIGITAL @m open) }3 62402.62417.pdf

= LIBRARY 19 January 2026
upedcalegr Total Citations: 2
Total Downloads: 720

{5 Latest updates: https://dl.acm.org/doi/10.1145/62402.62417
Published: 03 January 1988

ARTICLE
UNIX Emacs: a retrospective (lessons for flexible system design)

Citation in BibTeX format

UIST 88: Symposium on User Interface

Software
NATHANIEL SOLOMON BORENSTEIN, Carnegie Mellon University, Pittsburgh, PA, United ;ctober 17- 19, 1988
States Alberta, Canada
JAMES GOSLING, Sun Microsystems, Santa Clara, CA, United States Conference Sponsors:

SIGGRAPH

Open Access Support provided by:
Sun Microsystems

Carnegie Mellon University

UIST '88: Proceedings of the 1st annual ACM SIGGRAPH symposium on User Interface Software (January 1988)
https://doi.org/10.1145/62402.62417
ISBN: 0897912837

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/62402.62417
https://dl.acm.org/doi/10.1145/62402.62417
https://dl.acm.org/doi/10.1145/contrib-81100065714
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/contrib-81100031518
https://dl.acm.org/doi/10.1145/institution-60014708
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60014708
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F62402.62417&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/uist
https://dl.acm.org/conference/uist
https://dl.acm.org/sig/siggraph
http://crossmark.crossref.org/dialog/?doi=10.1145%2F62402.62417&domain=pdf&date_stamp=1988-01-03

UNIX Emacs: A Retrospective

Lessons for Flexible System Design

Nathaniel S. Borenstein
Information Technology Center
and Computer Science Department
Carnegie-Mellon University

James Gosling

Sun Microsystems, Inc.

Abstract

UNIX Emacs is well-known and widely used as a
text editor that has been extended in a remarkable
number of directions, not always wiscly. Because
it is programmable in a powerful yet simple
programming language, Emacs has been used as a
development tool for the construction of some
remarkably complex user-oriented programs.
Indeed, it has served as both a user interface
management system and a user interfacc toolkit,
though it was designed as neither. In this papcr,
we discuss the featurcs that have made it so
popular for user interface development, in an
attempt to derive lessons of value for more
powerful and more systematically designed
systems in the future.

I. Introduction

Designing gencralized tools for user interface
design and user interface management systems are
now subjects of widespread interest. In order to
better understand what such systems should do in
the future, it helps to have a clear understanding
of what has come before. Although many systems
have been explicitly designed to serve these
purposcs, few have been very widely used.

UNIX Emacs [1] is a popular text editor with a
powerful extension facility, that has devcloped a
large and extremely satisficd user community.
The extenston facility has allowed Emacs to be
used, not merely as a text editor, but as a general
testbed for user interface design, and as a user
interface management system (UIMS). Of course,
- Emacs was designed ncither as a testbed nor a

UIMS, but simply as a text editor. That it was
flexible enough to be extended so far aficld offers
us the opportunity to learn from its cxample, in
both positive and negative ways.

In this paper, we will briefly describe Emacs and
its uses. We will then try to describe the most
important featurcs of Emacs that have
contributed to its success, and also to recount the
problems that have been most frustrating to
serious Emacs users. From this overview, we will
then offer suggestions that may be of use to the
Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the

Assqcialion for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/ or specific permission.

© 1988 ACM 0-89791-283-7/88/0010/0095 $1.50

95

developers of future extensible systems and
testbeds.

This paper is an informal reflection of many years
of experience with Emacs. One of the authors
(Gosling) is the author of UNIX Emacs and of
many extension packages for it. The other
(Borenstein) is the author of several of the largest
UNIX Emacs applications {2, 3]. In addition to
personal experience, this paper also reflects the
results of a survey, conducted over the ARPA
Internet, of several dozen Emacs programmers. [t
is unabashedly anecdotal, and the authors make
no pretense of having conducted systematic
studies to prove our conclusions. Rather, we are
simply attempting to convey the lessons we feel
can be learned from the Emacs experience.

II. What is Emacs?

The name ”"Emacs” has become a generic term,
referring to an entire family of powerful,
extensible text editors, beginning with the original
ITS/Tops-20 Emacs [4]. That family has grown
and matured to the point where it now includcs a
wide variety of programs that resemble their
predecessors to greater or lesser degree, as
surveyed by Stallman [5]. The present paper
discusscs one of the most widely-used versions of
Emacs, known commonly as »UNIX Emacs”, but
also available for other operating systems, and

" occasionally referred to as ”Gosling Emacs.” In

this paper, the term ”UNIX Emacs” will be
applied rather freely to both the early non-
commercial and the more recent commercial
versions of the program.

The most powerful versions of Emacs are all
extensible in some extension language. ITS Emacs
was extensible in TECO, an extremely baroque
but powerful language in which Emacs itsclf was
implemented. Despite the difliculty of
programming in TECO, a wide variety of
extension packages, including mail and bulletin
board readers, have been implemented for that
version of Emacs.

UNIX Emacs offercd two major innovations over
its predecessors. First, because it was
implemented under UNIX, it included powerful
process management facilities, allowing, for
example, text to be filtered through arbitrary
programs, and also allowing dilferent programs to
be run in separate windows. Second, though
UNIX Emacs is implemented in C, it is exténsible
in a LISP-like language known as mlisp or Mock
Lisp. The decision to usc a different language for
extension than the onc used for implementation
was a crucial one; it appears responsible for most
of the best and worst aspects of UNIX Emacs as
perceived by those who have used it most
extensively. A discussion of the virtues and flaws
of mlisp will comprise the bulk of this paper. A
few brief cxamples, however, will serve to
introduce the unfamiliar reader to thc flavor of
~ the language. ‘

The statement

(defun (change-presidents
(replace-string "Reagan"
""Mondale")))

defines a new function, ”change-presidents” that
will, when called, replace any occurrence of the
word "Reagan” appearing after the cursor
position in the current document into the word
”Mondale”. For a more complex example, the
next program will also make sure that the new
word "Mondale” is alone and indented on a line.
Comments begin with semi-colons and are
italicized here.

(defun
(change-and-indent-presidents
(save-excursion ; Save
context & restore when done
(while
(! (error-occurred ; Keep
looping until error
(search-forward
"Reagan")
(delete-previous-word)
(delete-white-space) ;
Delete surrounding spaces
(if (! (bolp))
(newline))
; Insert newline if not at
beginning
(if (! (eolp))
(newline-and-backup))
; Similar for end of line
(insert-string "
Mondale™)))))))

Mlisp is used for programs ranging from simple
but repetitive editing tasks to elaborate uscr
interfacc or even database systems. Dozens of

96

different Emacs programs have becn written to
manage electronic communication (mail, bulletin
boards, UNIX nctnews, ce¢tc). Others have
implemented spreadshects, animation, databasc
access, specialized program cditing features, and
even a BASIC interpreter. The longest Emacs
program known to the authors is about 3000 lincs
of source code, defining approximately 150
scparatc functions. Clearly the user community
regards .mlisp as a programming language
powerful enough to do a wide range of tasks
beyond those related to simply editing text.

I11. What is Good about UNIX Emacs and mlisp?

Why have so many application programs,
particularly user-oriented ones, been written in
UNIX Emacs, using mlisp, when so many other
languages are available to the UNIX
programmer? In an attempt to answer this

question, we distributed a questionnaire to Emacs
programmers via the "UNIX-EMACS” mailing
list on the ARPA Internet and the UNIX Usenct.
We asked only a dozen questions, mostly open-
ended ones like "If you were designing an editor
extension language, what might you do that is
totally different from mlisp? What would you
most particularly want to keep the same?”
Questions like these yield very interesting and
illuminating answers that are, unfortunately,
extremely difficult to tabulate meaningfully. The
summary below represents the aggregate of the
responscs in the survey, with no pretense of
completeness or of meaningful quantitative data.

Extensibility

The one point on which nearly everyone seems to
agree is that the best thing about UNIX Emacs is
that mlisp exists. No one even suggested that
Emacs would be better without the powerful
facility for extension and customization, although
it is clear that such facilities, if abused, can create
an environment that changes so radically from
day to day as to be unusable for most people.
Donner and Notkin [6] discuss extension
mechanisms in general and offer several
convincing arguments for their desirability; the
expericnce of Emacs users suggests that this
desirability should be taken as a given. The
integration of powerful editing facilitics with a
full-fledged programming language scems
unquestionably useful, though it remains a matter
of some dcbate whether this combination is best
achicved by an ecxtension language for a text
editor or by implementing the text editor as a
subroutine library in an existing programming
language. Our experience suggests, in fact, that
such a dcbate is unresolvable, because such
mechanisms serve rather different purposes, and
are botht highly desirable.

Simplicity

Nearly cqually unanimous is the perception that
mlisp is a very simple and clegant language, well-
suited to its intended application domain (editing
text). Our survey revealed that mlisp is gencrally
perceived to be an unusually casy language to
learn and to use, perhaps partly because it
omitted complex features crucial to system
programming. The simplicity of mlisp will be a
recurring theme in discussions of both its virtucs
and failings in the sections that follow.

A significant part of mlisp’s simplicity stems from
the implicit context available to a host of mlisp
commands. For example, the mlisp function
(forward-character) moves the cursor forward one
character in the current window or buffer. The
implicit context of this command is the name of
the current window, its contents, and the current
position within that window. A more powerful
language might allow such commands to operate
in a wider set of contexts, but might also sacrifice
simplicity in favor of more general opcrations
with more parameters. Mlisp’s functions seem to
be well-chosen to act reasonably in most contexts.
The key principle is that there is simple syntax for
simple operations. This does not mean that a more
complex syntax should not be available for more
complex operations, only that the complexity
should not be forced on the programmer in a
simple context.

Clearly there are other approaches to simplified
syntax. Another useful approach within the LISP
world is the optional argument syntax pcrmitted
by Common LISP, which also permits casy use of
defaults while allowing more complex usage when
necessary.

Abstraction

A major factor for many who have used mlisp is
the level of abstraction it provides. The language
has a built-in modcl of text and the operations
that may be performed on text (that is, a model of
text editing) that is considerably morc abstract
than that of most other languages.

To begin with, mlisp views text two-
dimensionally, as a series of lines of arbitrary
length. It thus provides primitive functions such

as next-line and previous-line, as well as forward-
character and backward-character. This two-
dimensional view tremendously simplifies code
that necds to parse small pieces of text in random
parts of a file, a situation frcquently cncountered
in such applications as sprcadshcets and clectronic
mail.

Mlisp also provides strings as one of its basic data
types. Users are entirely freed from consideration

97

of string length and storage management, and fast
primitives are provided for taking portions of
strings. OFf course, one can argue that strings
should be taken for granted as a basic data type
in any reasonable programming language, but the
notion is still rather radical in the UNIX/C
community.

For more complex operations, Emacs provides
text "buflers” in which text can be inserted and
then manipulated with the full complement of
Emacs commands, including regular expression
searching which can be used to implement
complex parsing quite painlessly -- that is, without
attention to the details of breaking words into
tokens and similar low-level actions.

Also popular with users as an abstraction tool is
the Emacs argument passing mechanism, which
allows cach procedure to be cailed with a variable
number of arguments. A procedure calls the
“nargs” function to find out how many arguments
it was given, and then can ask for each argument
by number. Especially popular is the featurc that
allows functions to take an argument if it is given,
or else ask the uscr to supply it if the function
was called interactively, without the called
function ever having to know which of these two
alternatives actually occurred. (It should be
noted, however, that the parameter passing
conventions are also one of the least-liked aspects
of mlisp; it seems that the syntax and basic model
are popular, but the semantics of parameter
passing are almost universally despised. This is
discussed in a later section.)

Other users cited the abstract notion of "word” as
a major virtue of mlisp. Although mlisp does not
consider words as a type distinguishable from
strings in general, it does provide several primitive
functions manipulating objects as "words” (e.g.
forward-word and backward-word). The
definition of “word” is provided by a buffer-
specific syntax table, which (among other things)
defines which characters can be part of words and
which characters delimit words. The notion of
the syntax table is extremely popular, although
the interface to the syntax table is not so well-
liked.

Another abstraction tool provided by Emacs is a
set of several "save-state” functions. Thcse
functions allow the user to save the some portion
of the current state of the editor, execute some
arbitrary amount of mlisp code (which may
include recursive edits, and hence an arbitrary
amount of interaction with the user) and then
return to the previous state. These functions arc
uscd by nearly every major application package,
although there are some complaints about a few
details of the implementation of the functions.

Some of those surveyed went so far as to suggest
that mlisp should be made a more strongly typed
language, with basic types such as “window,”
PRI ? and

hares

Prmaranranh!? Nihare tha nut
n A\JLIICI D, 12119 auLtiiuvioy

yalaslap
included, would prcfer not to be troubled with
type conversions between, for example, paragraph
and word. Implementing some of the Emacs
abstractions such as “windows” as data typcs
would bc a dangerous undcrtaking, because the
syntactic complications might outweigh the
proven valuc of the basic abstractions. At the
other cxtreme, mlisp can be viewed as taking a
step in the dircction of dynamic typing. In an ideal
dynamically-typed system, however, the
interpreter or run-time system would detect
inconsistencies in dynamically-typed objects,
which mlisp docs not.

Development Cycle

Anothcr commonly-cited reason for developing
user intcrfaces in mlisp and Emacs is the speed of
the dcvelopment cycle. Because mlisp is
interpreted, it is simple to write and debug .a
procedure at a time, without ever waiting for a
compiler and a linker; in essence, mlisp provides
instant, integrated compilation and linking. As is
well-known from other interpreted environments
such as LISPs, this short write-test-debug cycle is
not only more satisfying for the programmer, it
also encourages the kind of small changes that
tend to be so particularly important in user
interfacc design (e.g. ?Wouldn’t this look better a
little further to the right?”)

Another key notion in the design of mlisp is that
the * programmer has access to the same
functionality that the user has. If a user can bind
a key to a function, so too a programmer can
invoke that function. This creates an extremely
simple model of learning to program,
”programming by example”. This feature (which
was not included in the earlier releascs) allows
users to type a series of keystrokes to perform a
task, and converts the keystrokes to mlisp
commands automatically. Thus, entire first
drafts, at least, of mlisp programs can be written
simply by ”walking ‘through the program” by
hand, using normal Emacs commands. Several
users suggested that this process should be
generalized: user interfaces could first be
developed by this walking-through process, then
debugged in mlisp with the interactive
development cycle just mentioned, and finally
translated to C for fast exccution of finished
programs. While it is unlikely that anyone wiil
ever expand mlisp to do this, current work with
dynamically linked languages [7,9] may yield the
same advantages in the long run.

98

Window and Process Management

One of the reasons cited most often for the use of
UNIX Emacs as a working environment is its
ability to function as a window manager, cven on
relatively unsophisticated display terminals. This
ability is enough to convince many UNIX users to
do all their work within Emacs, using terminals
for which other window managers are not
typically available. More important, the window
management featurcs are a boon to programmers
of user interface applications. The ACRONYM
help system, for example [2], responded to a user
typing a question mark in the shell window by
placing help text in a second window and a menu
of further help topics in a third window.
Windowing is extremely time-consuming to code
from scratch in a language such as C, but is
built-in and trivial for the mlisp programmer.

Our survey suggested that the window and
process management features combine to make
Emacs a tool uniquely suited to the integration of
systems from diverse components. Because Emacs
treats both processes and windows at a high level
of abstraction, it is relatively easy to write a short
mlisp program that passes messages back and
forth between, for example, a C program in one
window and a Lisp program in another, all under
the control of a user communicating with the
mlisp program. Many respondents indicated that
they had used mlisp for such integrating purposes.
Typically, an application might have its most
computationally intensive or low-level parts coded
in C, with integrating code and a user front end
written in mlisp.

Obviously, the window management facilities in
Emacs are simply not comparable to those
available in a modern window manager [10,11].
Nonethcless, most such window managers do not
allow anywhere nearly as simple a manner of
access to the window facilities as was made
possible in Emacs via mlisp, and would benefit
greatly by such a mechanism.

Miscellaneous Virtues

Several other mlisp features were frcquently
mentioned by respondents to our survey. Many .
expressed a fondness for the “execute-mlisp-line”
command, which allows an mlisp program to put
together a line of mlisp code itself and then
execute it. Others cited the help commands,
which can be used to find, for example, all defined
functions including the word "string”. Command
completion, whereby Emacs automatically
completes file names and mlisp function names, is
also well-liked. The "undo” command, which can
undo the effect of nearly any opecration not
involving file manipulation, is predictably
popular. Regular expressions, which facilitate

complex conditional text scarches and
replacements, are extremely popular, although the
syntax used is less popular.

1V. The Down Side

Despite all the useful features, UNIX Emacs is, in
fact, far from paradise for the uscr interface
designer. Most of the problems fall in the
gencral category of “implementation failings” --
either program bugs or featurcs that, in
retrospect, should clearly work differcntly. Many
such failings were mentioned by respondents to
our survey, and will be mentioned here only
briefly. A more critical set of problecms pertains
to inadequate integration of mlisp into the wider
UNIX world; thesc can not fairly be catcgorized
as Emacs implementation failings because they
reflect the entire basic structure and relationship
of UNIX and Emacs. Finally, many of those
surveyed complained of specific featurcs that are
simply missing from the mlisp language.

Implementation Failings

Most of the implementation failings in mlisp can
be traced directly to a simple misconception in its
design: mlisp was “only” an editor extension
language, so it was unclear that it nceded to be a
completc programming language. This s
probably the most important lesson to be lecarned
from mlisp: extension languages are real
languages, not toys.

The most commonly cited implementation failing
is simply that mlisp is too slow. Mlisp is an
interpreted language; the so-called mlisp compiler
merely translates tokens into a byte code for
faster interpretation. The interpretive nature of
mlisp makes possible the rapid development cycle
discusscd above, but most users would dearly love
to see the interpreter supplemented by a true
compiler to allow completed applications to run
‘faster. However, it would be diflicult to
implement a real compiler without making the
language more complex, which would be a shame.

Another problem with mlisp is its inability to run
asynchronously. While an mlisp program can
manipulate a large number of active
asynchronous processes, none of them are mlisp
processcs; only one mlisp process can run at once.
Worse yet, that process is uninterruptable, making
an infinite loop a programming disaster. Various
version of Emacs have allowed asynchronous
mlisp processes, but these have typically depended
on variants of UNIX and could not be supported
widely.

One part of mlisp that has been almost
universally condemned is its argument passing
and variable scoping. These are simply poorly

99

thought out, and can often lead to horriblc bugs
in which one routine rescts another’s variables.
The variable passing and naming schcmes are so
bad that they make recursion almost impossible in
mlisp programs. Basically, they were designed to
have the same semantics as macro expansion,
which turned out to be only rarely desirable in
paramecter passing. (However, they did pcrmit a
correct implementation of the “case” statement as
an mlisp procedure.)

Mlisp also suffers from poor debugging and
version control facilities. The few functions
supporting mlisp debugging were added to Emacs
rather late in its life, and were never completcly
debugged themselves. It is also difficult to insurc
that several parts of a complex mlisp program are
mutually compatible, a significant problem for
programs dependent on functions from the Emacs
mlisp library.

Respondents to our survey also complained about
several administrative problems, including the
inadequacy of the Emacs help database and
written documentation, the utter lack of a tutorial
introduction, and the cluttered state of the mlisp

library distributed with the program. Finally, a
few genuine bugs were reported, primarily related
to thc overflow of certain internal Emacs
parameters.

Integration Failings

Many of the respondents to our survey had
complaints that can be described as failures of
integration. Typically, users complained of the
difficulty or slowness of getting access, in an mlisp
program, to the UNIX system library, the macro
preprocessor, low-level devices, or the internals of
built-in mlisp primitives such as forward-
character. They also complained that several
aspects of Emacs’ internal state are madc difficult
or impossible for the mlisp programmer to inspect
or modify; examples of these include physical
screen positions, the menu system, storagc
management, key binding state information, and
text search state information.

These failings strongly reflect the fact that Emacs
is not written in mlisp; the whole point of mlisp is

“to provide a simpler language for extending the

editor, with the almost inevitable result that some
things would not be available from within mlisp.
It is not at all clear what the right solution to
these problems would be; if Emacs were extensible
in C, its implemecntation language, it would not
have such problems, but would bc far less
convenient for most users and applications.

The intcgration failings also reflect the fact that
Emacs suffers from the “design by accretion”
syndrome. During the early stages of its life it

was possible to make wide sweeping changes
when some new feature required such changes to
fit smoothly. As Emacs became more popular, it
also became more entrapped by its own history.
Changes bccame impossible because there were
too many users and too much mlisp code that
dcpended on the status quo.

User Interface Failings

It should also bc noted that, although Emacs has
proved to be widely popular, there remains a very
substantial set of pcoplec who have seen Emacs,
tricd using it, and violently despise it. There are
many rcasons for such a reaction, but the most

common one is discomfort with the gencral user

interface paradigm. The standard joke among
such pcople is to extend one’s hand to another, as
if to shake hands, but to hold the hand twisted
and contorted into as unlikely a position as
possible, and say, “Hi, pleased to meet you, I’'m
an Emacs user.” Such people find Emacs’
reliance on the CTRL key and ESC- or -X-
prefixes to be overly confusing and diflicult to
learn.

Indeed, studies of text editor performance [12,13]
indicate that it is not too difficult to build an
editor with a more easily learned set of keyboard
commands, with no sacrifice in expert
performance levels. Clearly, Emacs has succeeded
in spite of its command syntax rather than
because of it, although a surprising number of
people have come to regard it as natural to type
CTRL-SHIFT-2 to set a mark in a bufler.

It didn’t have to be that way. In the development
of Emacs, it was far too easy to say that, since the
basic interface was entirely customizable, it wasn’t
important to devote a lot of attention to getting
the default interface to be correct. After all,
anyone who didn’t like the interface could change
it. 'What this attitude ignored, however, was the
old rule our mothers used to teach us about the
lasting value of first impressions. Many people
tricd Emacs, couldn’t stand the basic interface,
and went back to their old standard editors, such
as the vi editor on UNJX.

It is worth noting that this happened despite the
fact that several people, indepcndently,
implemented more or less complete vi emulation
packages for Emacs in mlisp. It scems that even
if a package existed that was an absolutely perfect
simulation of vi, most of the people who prefer vi
to Emacs would stick with the clearly lcss
powerful vi. While this is in part due to the
smaller size of vi, it is also attributable to the
unacceptable difliculty, in the minds of such
people, of having to learn how to turn the vi
emulation package on in the first place.

100

The clear lesson to be learned from this is that,
while flexibility in such a system is indced
essential, great care must be paid to get the
default behaviors to be simple and natural, and to
provide very clear and simple ways to use a
carefuliy chosen small set of the most commonly
desired customizations. It may be,
organizationally, that the people who build the
flexible tools are not necessarily the right pcople
to figure out which are the correct defaults and
”standard options”. The process of making such
choices probably requires serious observation of
users, or even controlled cxperiments, to compare
possible system configurations.

Missing Features

Finally, a number of those surveyed suggested
their favorite features that mlisp lacks. The
danger of runaway featurism is amply
demonstrated by languages such as PL/I and
Ada. Still, it is undeniable that many of the
features cited in the survey would be wonderful
additions to mlisp: floating point arithmetic,
complex data types, arrays, lists, case statcments,
graphics, fonts, underlining, highlighting, and
pointers, and constants. Other, less clear-cut
suggestions included vectors, infix arithmetic,
support for ”paragraphs” at the level now given
to "words”, structured document editing,
alternate syntax (more like algorithmic languages
such as Pascal), and multiple parenthesis types for
easier parenthesis balancing.

In addition, it goes almost without saying that
Emacs was written for a previous generation of
computer technology; there is absolutely no
support for the kind of sophisticated graphics
people are coming to take for granted on a
modern workstation.

V. Conclusions: Implications for Future Toolkits and
User Interface Management Systems

UNIX Emacs has proven to be an extremely
valuable tool for a wide variety of unintended
purposes, most notably “quick-and-dirty” user
interface design. The great virtue of Emacs is its
extensibility; the great virtues of mlisp are its
simplicity, its abstract, high-level view of text,
strings, processes, and windows, and the quick
development and prototyping cycle it facilitates.
Its greatest failings are its lack of integration into
UNIX as a whole, and specific fcatures that
reflect a design that did not recognize the need to
make an editor extension language a “real”
programming language. As tools are developed
for rapid prototyping of uscr interfaces on the
ncxt generation of hardware, close attention to the
success and failings of UNIX Emacs may make
those tools more generally uscful than they might
otherwise be.

The biggest uncertainty in the minds of those
_ surveyed, as well as the authors when the survey

" began, was whether or not mlisp should have

been more than it is. That is, it was widely
recognized that one of the great virtues of mlisp is
its simplicity, and that one of the great failings of
mlisp is in its lack of power for specific kinds of
tasks. It is not clear whether or not these two
facts can be scparated. Can mlisp be made
significantly more powerful without destroying its
simplicity? This is an important topic for
programming languages in general, but
particularly so for user-oriented application
programming, where rapid prototyping is most
essential.

Later projects have pursucd differcnt stratcgics
regarding the question of extcnsion mechanisms in
such systems. The original Andrew Basc Editor
[8], for example, retreated from the notion of a
full-blown extension language like mlisp, choosing
instead to provide the entire facility as a powerful
subroutine library for the C programmer. This
avoided problems of underpowered language and
over-ambitious use of the extension mechanism,
but at the cost of radically lengthening the process
of prototyping and perfecting user interfaces.
The most recent version of the Andrew Toolkit [9]
improves this scheme substantially by allowing
customization via dynamically loaded C
programs, but this is still too cumbersome for
casual customization purposes. It scems likely
that the only "right” solution involves making the
functionality of the system available at two levels:
in the implementation language (e.g. C) for the
most scrious applications, which require high
levels of reliability and performance, and in a
simpler extension language for rapid prototyping
and simple customization.

Acknowledgements

We would like to thank the dozens of mlisp
programmers who took the time to respond to our
survey. We would also like to thank Mike Kazar,
Bruce Lucas, and several anonymous reviewers
for their helpful comments on a previous draft of
this paper.

Bibliography

{1} Gosling, James, “Unix Emacs”, Ca.rnegie-
Mellon University Computer Scicnce Department,
1981.

[2] Borcnstein, Nathaniel S., "The Design and
Evaluation of On-line Help Systcms”, Ph.D.
Thesis, Carnegie-Mcllon University, 1985.

[3] Borenstein, Nathanicl S., "The BAGS Message
Managcement System”, Carnegic-Mcllon
University Computer Science Department, 1985.

101

(4] Stallman, Richard M., JEMACS Manual for
TOPS-20 Users”, MIT AI Mcmo 556, 1981.

[5] Stallman, Richard M., “EMACS, the
cxtensivle, cusotmizable self-documenting display
editor”, Proc. ACM SIGPLAN SIGOA
symposium on text manipulation, Portland,
Oregon, June, 1981.

[6] Donncr, Marc, and David Notkin, ’Flexible
Systems; Customization and Extension”, to
appear in IEEE Software.

[7] Kazar, Michael, "Camphor -- A Programming
Language for Extensible Systems”, Usenix
Confercnce, 1985, Portland.

{81 Gosling, James, and David S. H. Rosenthal,
"The User Interface Toolkit”, in Proceedings of
PROTEXT I Conference, 1984.

[91 Palay, et al., “The Andrew Toolkit: an
Overview”, Proceedings of the USENIX
Technical Conference, February, 1988,

[10) NeWS Manual, Sun Microsystems, Inc.
March, 1987.

(11} Scheifler, R. W., and J. Gettys, "The X
Window System”, ACM Transactions .on
Graphics 5(2) pp. 79-109, April, 1986.

{12] Roberts , Teresa, and Tom Moran, "The
Evaluation of Text Editors: Methodology and -
Empirical Results”, Communications of the
ACM, April, 1983, '

[13] Borenstein, Nathaniel S., "The Evaluation of
Text Editors: A Critical Review of the Roberts
and Moran Methodology Based on Ncw
Experiments”, Proccedings of CHI '85
Conference, 1985.

