
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/62266.62291
.

.

ARTICLE

Cooperative work in the Andrew message system

NATHANIEL SOLOMON BORENSTEIN, Carnegie Mellon University, Pisburgh, PA,
United States
.

CHRIS ALAN THYBERG, Carnegie Mellon University, Pisburgh, PA, United States
.

.

.

Open Access Support provided by:
.

Carnegie Mellon University
.

PDF Download
62266.62291.pdf
19 January 2026
Total Citations: 16
Total Downloads: 585
.

.

Published: 01 January 1988
.

.

Citation in BibTeX format
.

.

CSCW88: Computer Supported
Cooperative Work
September 26 - 28, 1988
Oregon, Portland, USA
.

.

Conference Sponsors:
SIGGROUP
SIGCHI

CSCW '88: Proceedings of the 1988 ACM conference on Computer-supported cooperative work (January 1988)
hps://doi.org/10.1145/62266.62291

ISBN: 0897912829

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/62266.62291
https://dl.acm.org/doi/10.1145/62266.62291
https://dl.acm.org/doi/10.1145/contrib-81100065714
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/doi/10.1145/contrib-81100420869
https://dl.acm.org/doi/10.1145/institution-60027950
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F62266.62291&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/cscw
https://dl.acm.org/conference/cscw
https://dl.acm.org/sig/siggroup
https://dl.acm.org/sig/sigchi
http://crossmark.crossref.org/dialog/?doi=10.1145%2F62266.62291&domain=pdf&date_stamp=1988-01-01

Cooperative Work in the Andrew Message System

Nathanici S. Borenstein
information Technology Ccntcr

and Computer Science Department
Carnegie Mcilon University

Pittsburgh, PA 15213

Abstract

The Andrew Message System, a
distributed system for multi-media
cicctronic communication, has a
number of special features that
support cooperative work. After a
brief discussion of the system itself,
these features are described and
discussed in more detail. Examples
of how organizations actually use
these features are then presented
and discussed, with particular
attention paid to the “Advisor”
system for clcctronic consulting.

Introduction

The ellbrt to make computer systems bcttcr
support human collaboration is a many-facctcd,
ongoing endeavor. Such ellbrts arc always al.
least partially limited by the available tools. Not
only do sophisticated tools (or their absence)
dclinc the set of possible experiments that can be
conducted, but they also provide a framework for
our own thinking about such systems. Thus, any
substantial improvement to the existing base of
application tools holds the promise of opening up
fertile ground, both for new approaches to, and
for empirical studies of, human collaboration.

The Andrew Message System (AMS) appears to
represent just such a substantial improvement. It
extends the facilities of previous electronic mail
and bulletin board (bboard) systems in scve&~l
directions relevant to cooperative work. This

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

Chris A. Thyberg
Academic Computing

Carnegie Mciion University
Pittsburgh, PA 15213

paper is an initial explanation of how the AMS
has been used, in its early deployment, to
faciiitatc cooperative work.

Background: Andrew & Its Message System

The Andrew Project [I, 2) is a collaborative eflort
of IBM and Carnegie Mciion University. The goal
of the Andrew project is to provide a good
environment for university computing. That is,
particular emphasis is paid to the needs of the
academic and rcscarch communities.

As the project evoivcs, it has conccntratcd on
three main parts. The Andrew File System [3,4]
is a distributed network lilt system dcsigncd to
provide the illusion of a uniform central UNIX
file system for a very large network (10,000
workstations was the design goal). The Andrew
Toolkit [S] is a window-system-indcpcndcnt
programming library to support the tlcvciopment
of user interface software. It currently supports a
number of applications, including a multi-media
editor that allows scamless editing of text, various
kinds of graphics, and animations.

The third main piccc of Andrew is the Andrew
Message System, or AMS. The AMS, which
makes heavy USC of the lilt system and the toolkit,
provides a very large-scale mail and bulletin
board system. It transparently supports mcssagcs
which include text, pictures, animations,
spreadsheets, equations, and hierarchical
drawings, while also supporting “old-fashioned”
text-only communication with low-end machines
such as IBM PC’s and with the rcsl of the
electronic mail world. The Andrew Mcssagc
System has only recently become widely available;
the “results” discussed in this paper arc really
observations of the first large test installation, the
Carnegie Mellon campus, whcrc thousands of
students, faculty, and stalf have been using the
system during its dcvclopmcnt over the last few
years.

Q 1988 ACM O-89791-282-9/88/0306 $1.50

306

A dctailcd description of the Andrew Mcssagc
System is beyond the scope of this paper and can
be found elscwhcrc [6, 71. This paper will
concentrate on those parts of the system that arc
of particular rclcvance to issues of coopcrativc
work.

AMS Features for Cooperative Work

Multi-Media Objects

When the Andrew Toolkit and Mcssagc System
wcrc dcsigncd, the desirability of multi-media
objects sccmcd clear, and indeed expcricncc has
borne this out, inasmuch as the multi-media
fcaturcs seem to bc widely used and apprcciatcd.
Howcvcr, the elTccts of the multi-media
functionality on the way pcoplc actually
communicated were largely unanticipated.

When the multi-media fcaturcs wcrc first
introduced, they were introduced as upgrades to
an existing system; most of the Andrew Mcssagc
System had been in place ‘for over a year, and the
long-promised introduction of the ability to send
graphics and animation through the mail didn’t
stem to make much of a splash on the campus.
Indeed, the question of “why don’t pcoplc make
more use of the ability to send pictures through
the mail?” sccmcd for a while to bc something
requiring serious investigation.

What actually seemed to happen, howcvcr, was
that a gradual raising of consciousness took place
after the introduction of the new functionality.
For cxamplc, it was months after thcsc
capabilities cxistcd that someone thought to
include, in his suggestion for changes to a user
interface program, a lint drawing of what hc
thought the intcrfacc should look like. Similarly,
it secmcd a major conceptual breakthrough when,
instead of describing a bug, a user simply took a
snapshot (screen dump) of his screen when the
bug was clearly visible, and included the image of
the screen as part of his bug report mcssagc
(Figures l-2).

Thus it stems that a picture is only worth a
thousand words when pcoplc arc fully aware that
pictures arc an option. Now that such awarcncss
is more common;~Hlustrations arc becoming lcss of
a novelty and arc increasingly relied on to clarify
prose, and particularly to speed the diagnosis of
bug reports.

In addition, animations, initially pcrccivcd mcrcly
as a novelty when included in mail mcssagcs, have
also proven to bc useful for clarifications. For
example, animations have been used on scvcral
occasions to clarify a convoluted prose tlcscription
of a complex process. While it is dificult to
include a proper animation cxamplc in an article

to bc published on paper, Figures 3-S give some
frames from such an animation.

Magazines

One special feature of the Andrew Message
System that is itself an example of coopcrativc
work is the electronic magazine. Magazines arc
user-edited, publicly-readable bulletin boards.
For example, a user with a strong interest in
music might read a dozen or so music-rclatcd
bboards. (If this sounds excessive, it might help
to know that at Carncgic Mellon thcrc arc
currently over 1700 bboards in the public tree,
and that some individuals subscribe to nearly 400
of them.) If hc has voluntcercd to cdjt a “music
magazine” he can, as he reads thcsc bboards,
simply cross-post the best mcssagcs onto his
magazine with a single keystroke or menu
selection. Those less intercstcd in wading through
the masses of information on the other bboards
can instead peruse his magazine alone.

As it turns out, this mechanism is not merely an
example of cooperative work, but strongly
supports other coopcrativc cllbrts. One mcmbcr
of the AMS Group, for cxamplc, reads
approximately a dozen bboards of strong
relevance to electronic communication. The other
members of the group do not read those bboards,
but instead read an electronic mail magazine
prepared by the person who does read them all.
In this way, the system makes it easy for one
member of a group to serve as an information
filter for the other members. There arc currently
over 30 such electronic magazines on the Andrew
system at Carnegie Mellon, and a few of them
regularly appear on the “top 40” list of the most
widely-read bboards on the system. For these
particularly popular magazines, over a hundred
pcoplc arc choosing to read the magazine instead
of the source bboards from which the magazine’s
contents arc derived.

Private Bulletin Boards and New Bulletin Board
Creation

The Andrew Mcssagc System supports a rich and
flcxiblc set of protection and conliguration options
that facilitate grow communication. In
particular, the protection mechanisms permit the
creation of public bboards, private bboards
(rcadablc & postablc only by mcmbcrs of a
group), olTicia1 bboards (rcadablc by all, postablc
only by a few), administrative antI advisory
bboards (postablc by all, rcadablc by only a few;,
and various hybrids thcrcof. In addition, the
protection mechanisms can bc (and arc) used to
allow, for cxamplc, a sccrctary to read and
process somconc clsc’s clcctronic mail. (Indeed, a
sccrctary could crcatc something like a mag:lzinc

for his cmploycr, containing only those picccs of
his mail that hc thought his cmploycr would really
want to XC.)

The system is also conhgurablc to specify the
control of the creation of new bboards. Since the
bboard database is structured as a tree, nnc can
specify, for any point in the tree, whcthcr some or
all users are allowed to crcatcd sub-nodcs in that
tree. On the Carncgic Mellon campus, the system
has been liberally conligured in most parts of the
tree, to allow any users to create new bboards
when they so dcsirc. Although this has crcatcd
occasional annoyances that necdcd to bc cleaned
up by the system administrators (notably when
two pcoplc created similar but diJTercntly-named
bboards, or when pcoplc frivolously created
nuisance bboards in inappropriate locations),
these rare annoyances have been more than oJJ’sct
by the freedom it has given to the participants in
group discussions. In general, the users seem to
have reasonably clear perception of when it is
appropriate to start a new bboard, and the
knowlctlgc that they can do so without troubling
overworked system administrators cncouragcs
them to do so quite often. In fact, the
proliferation of bboards has led to the creation of
an automatic “bboard bboard” which reports
daily the names of all the bboards that have been
created or deleted in the last 24 hours, and this
bboard is itself subscribed to by dozens of users.

Active Messages

Another aspect of the AMS that is rclcvant to
cooperative work is its support for acfive
rnc.rsngcs. Active mcssagcs are messages which,
when read, prompt a message-specific interaction
with the user. The “active message” fcaturc was
not tIcsigned as a feature in its own right; instead,
the c~~~cepf. of actitc messages has evolved out of
sevcra, bpccific types of active mcssagcs that the
sysieni now supports. A worthwhile goal for
future rcscarch and implcmcntation is to
generalirc this notion to cnhancc its utility.

In the Andrew Mcssagc System now, thcrc arc
four spccifrc types of active mcssagcs, each of
which will bc dcscribcd briefly here.

Folder Announcements arc messages that invite
subscriptions to a new bulletin board. Fnr
example, if there is a bboard called
“nndrew.gripes” and someone crcatcs a new
bboard called “andrew.gri~es.nnlEry,” the system
will automatically post a folder announccmcnt
message on andrcw.gripcs. Anyone who
subscribes to andrcw.gripes will see the mcssagc,
which will describe the new bboard and show the
first message on that bboard, and then ask the
user whether or not he wishes to subscribe. In
addition to thcsc automatically-gencratcd folder

announcements, users may thcmsclvcs easily post
folder announccmcnt mcssagcs whcncvcr they

deem it appropriate.

Vote Messages arc mcssagcs ihat Put a qucstior
to a vote. The rcadcr of the mcssagc can see the
text of the mcssagc, t.ypically an explanation of
the question being voted on, and can then choose
from a multiple-choice option list. The creator of
the vote dctcrmincs the vote choices, and whcthcr
or not write-in votes are to be pcrmittcd. The
reader of the message always has the option of
not voting. In order to prevent u’ndctcctablc
“ballot box stulling,” all votes are subject to the
full authentication of the AMS Message Dclivcry
System, so that votes arc about as far from sccrct
(anonymous) balloting as could bc imagined.

Vote messages seem to have great utility in
settling arguments. Often it is impossible to tell
from normal bboards what the majority opinion
is, because minorities are so often quite vocal. A
simple voting mechanism has proven useful in
moving discussions beyond stagnant debate. For
exam& it was used to hnally settle two of the
most burning issues in the Andrew dcvelopmcnt
project, the question of bottled water versus tap
water and the question of which brands of pop
should be stocked in the pop machine. (SW
Figures 4-7.) Settling less, but perhaps more
interesting, the university’s Public Relations
dcpartmcnt has been using the voting mechanism
to conduct informal surveys of campus opinion.
(See Figures 8-9).

In addition, the vote mechanism has been used in
at Icast two ways that the dcvelopcrs of the
system did not expect. One way that it is used is
to facilitate quick answers to questions. One user
recently sent out a mcssagc asking for ,advicc in
choosing between scvcral ways to work around a
bug (Figure 10). By making the mcssagc call for
a vote, hc made it particularly easy for the
rccipicnts of his mail to express their opinions
immcdiatcly. Another uncxpcctcd USC of the vote
mechanism has been to play a word game known
as “dictionary,” in which a moderator chooses an
obscure word, each participant submits a fake
“dcJinition,” and then cvcryone has to try to
choose the correct definition from among the
fakes (Figures I I-12).

Return-Receipt Messages arc simply mcssagcs that
arc marked as requesting conhrmation. When the
user actually reads the mcssagc, hc will bc asked
if he is willing to send an acknowlcdgmcnt to the
scndcr. By answering positively, hc causes a
confirmation to bc sent automalically. This
mechanism is a clear analoguc to those provided
by physical mail and is similarly useful. In
particular, the mechanism is used regularly by
pcoplc who communicate across distant network

308

connections that tend to lost mail.

Encloswe Messages arc mcssagcs that cnclosc
additional data. For example, two users at
rcmotc sites may have no way to cxchangc data
cxccpt via mail. Using enclosures, they can easily

. scparatc the mcssagc hcadcrs and body from the
object being cncloscd. When a user rcccivcs an
enclosure message, he is given options for
processing it, such as writing the cnclosurc (not
the full message) to a file or running it through a
filtering program. This mechanism strcamlincs
some of the processes involved in cooperative
eflorts by remote users. For example, two co-
authors of a paper who cxchangc drafts via mail
typically, in existing systems, have to cdil out all
of the mail headers each time they rcccivc a draft
from a co-author. Using cnclosurcs, the active
nature of the mcssagc causes the same editing to
be performed csscntially automatically.

Extension Mechanisms

The Andrew Message System provides several
types of extension mechanisms, each of which has
been relied on heavily by those who USC the
system to coordinate group activities. The
extensjon mechanisms that have pro&n most
useful in the AMS to date will be dcscribcd hcrc
briefly.

Automatic filtering of incoming messages has
proven to bc immensely valuable. The AMS
provides a language for writing spccilications of
what will happen to new pieces of mail -- that is,
where they will bc placed for user viewing. For
example, messages with certain key words can bc
routed directly to appropriate pcrsonncl for
handling them. This kind of functionality has
been particularly useful for advisory and bug-
handling organizations, as described later in this
paper, and for the support of an extcnsivc bulletin
board system. (It should, in fact, be noted that
this mechanism has proven so useful that has
recently been rewritten in a more gencralizcd and
powerful way, including an embedded LISP
interpreter and support for running other
programs from within the classification program.)

Boilerplate message tenzpiates arc useful for
processing routine requests for information or
action. It is straightforward in the AMS to crcatc
a draft mcssagc that is the basic answer to a
common request, and to then bring up that draft
with a single keystroke or menu sclcction.

Compound commands are a mechanism for
reducing the number of actions to bc taken in a
common situation. For example, using compound
commands, one can easily create a single menu
item which, when selcctcd, will take the mcssagc
currently being composed, add a few dcsignatcd

hcad& lines to’ it, send it to its clcsignatcd
rccipicnts, and place a copy on a private bboard
somewhcrc. It has been the authors’ cxpcricncc
that this is so useful that users will put up with an’
amazingly ugly syntax for designing the
commands. Nonetheless, a more friendly syntax
and mechanism for this purpose is being planned.

How the AMS Is Used In Real Cooperative Efforts

The Andrew Message System has proven to be
exceptionally popular with its user community in
general. Weekly statistics indicate that nearly
2000 people USC it at Carnegie Mellon to read
bulletin boards regularly. Several thousand
Andrew users read their personal mail with the
system. The AMS is also in USC at several other
universities and research sites. This would be
indication enough that system is a success.
Howcvcr, the greatest enthusiasm has in fact been
found among those who are using the AMS for
substantial cooperative activity. Most notable
among these devoted users are the people who
provide support services on ,Andrcw. The
Andrew Advisor is a singular example of real-life
cooperative work, conducted with the Andrew
Message System.

The Advisor System

Campus Context

Carnegie Mellon and the Andrew project face
some unique problems in supporting its
computing constituency Three factors contribute
to the challenge. First, although the system has
been widely deployed and promoted, Andrew is
an cvcr developing, rapidly changing environment.

. Second, campus computing expertise is widely,
but uncvcnly, distributed. The users span the
entire spectrum from technophobe to tcchnophilc.
Third, the cast of characters involved in fixing
bugs, adding new features, providing system
administration, and answering users’ questions is
diverse and distributed among scvcral
organizations and buildings. The following
organizational schema gives a sense of the range
of people that might bc involved in handling any
particular user rcqucst:

Information Technology Center: Dcvclopcrs who
crcatc, document, and distribute the
Andrew system.

Andrew/Unix Development: Systems programmers
who maintain and support UNIX and
Andrew on several machine types.

Andrew Systems Administration: Systems
administrators and operators who run the
Andrew file servers and other csscntial
central scrviccs.

309

Networking and Communications:- Programmers
and technicians who maintain the complex
campus network.

Academic Computing: Professional and student
consultants who provide technical support,
public computing facilities, documentation,
training, and publications, for Andrew and
other computing systems, to the cntirc
campus community.

Andrew Support Group: A sub-group of Academic
Computing specializing in Andrew.

To cope with this complexity, members of the
Andrew Support Group (ASG), with the help of
the AMS group, have developed an extensive
electronic mail consulting service called
“Advisor.” Advisor is designed to create the
illusion of a single, private, and personal help
resource for every conceivable Andrew problem.
The user simply mails a query to Advisor’s
account. In 24-48 hours private mail comes back
to the user. In fact, however, Advisor is ‘the
front-end of a vast network of bboards that enlist
the cooperative eflbrts of all the professional stalfs
in the organizations listed above.

Ancient Advisor History

Advisor has been in use since January, 1985. In
the earliest days, it was simply another Andrew
account. One person read the incoming mail,
handled it’ with whatcvcr limited tools wcrc
available (rr%stIg paper lists and a good memory
for the status&a given request), and sent out a
reply to the user. This worked reasonably well
when Andrew was in pilot deployment to about
100 carefully selected users and the Andrew
consultant had an oflice in the Information
Technology Center.

In the spring of 1986, the tirst Andrew cluster
opened and Andrew accounts were available to
the campus. Immediately, Advisor was
ovcrwhclmed with mail. An additional consultant
picked up Advisor duties, but there were always
problems with how to divide the work bctwccn
the two staff members and how to keep track of
the status of any given message. Classifying
messages was possible, but the mechanism was
extraordinarily clumsy, labor-intcnsivc, and not
too useful, because all the messages wcrc still
lumped together in one big lIat mail directory.
The combination of the large volume of the easy
questions and the gcnuinc dilIiculty of the hard
questions made it tough to process Advisor mail
in a timely fashion. The staff clearly rcquircd
some ellicicnt method of getting almost immcdiatc
assistance from the right people in the other
Andrew groups.

In the fall of 1986, the lirst version of what is now
the Andrew Message System was rclcascd to
campus. Though conceptually distinct, personal
mail and bboards were no longer dilfcrcnt in kind.
One’s private mailbox and a public bboard were
both examples of message databases, albeit with
dirercnt levels of protection. Furthermore, since
messages databases were built on top of the Unix
hierarchical directory structure, bboards could
now be nested within each other. This “paradigm
shift” made it possible to think of using bboards
as folders for classifying Advisor’s “personal”
mail. Armed with a suite of semi-private bboards
(postablc by the whole community, but readable
only by those in the Andrew organizations) and
an extremely primitive stack-oriented language for
automatically filing messages, the Advisor stalTsct
out to do things dilfercntly.

Advisor I

Tom Malone, in his discussion of the Information
Lens system [8], identifies three fundamental
approaches to handling the twin problems of
being - overwhelmed by useless electronic junk
mail, and yet frequently being unaware of vital
information available only electronically. The
first .approach, which he calls cognitive jiltering,
attempts to characterize the contents of a message
and the information needs of the recipient. The
system uses these profiles to match messages
about XYZ with readers who have expressed an
interest in XYZ. The second approach, which he
calls social filtering, focuses on organizational
relationships between the sender and the recipient.
In addition to the message’s topic, the status of
the sender plays a role ‘in the reader’s interest in
the. message. The lIna1 approach, which he calls
economic filtering, looks at implicit cost-benegt
analyses that come into play when on!: decides
what to do with a piece of electronic mail. The
first incarnation of the Advisor system relied very
heavily on both cognitive and social Iilters.
Automatic message classification was the primary
implcmcntation technique.

Each message to Advisor that did not come from
a member of a known set of Advisor “helpers”
was judged to be from a user needing help. The
message was then placed on a bboard called
“advisor.open.” The Advisor staIT subscribed to
this bboard and used it as an inbox for new
questions. A copy of mail from the user was also
placed in advisor.trail, to assist the staff in
keeping track of rcqucsts. Thus, the first criterion
for sorting the mail was a social one - is the
scndcr a hclpcr or a user?

An incoming question from a user was also copied
to one of a series of subject-specigc bboards,
according to keywords in the subject- line. For
example, if a subject line was “mail bug”’ the

310

message was copied to advisor.mail. These
bboards, though not open to the public, wcrc
rcadabic by the dcvciopcrs, system administrators,
etc., who subscribed to whichcvcr bboards
covered their arcas of intcrcst and rcsponsibiiity.
To continue the cxamplc, the AMS group
members subscribed to advisor.mail, thcrcby
increasing the likciihood of seeing only those
messages gcneraiiy rcicvant to them.
Uninformative or nonexistent subject iincs caused
the mcssagc to bc copied to advisor.misc. Ail good
Advisor hcipcrs were expected to subscribe to
advisor.misc, in addition to their other
subscriptions. Here one finds a clear example of
cognitive filtering.

Cognitive and social iiltcring were combined at
scvcrai critical junctures. For cxampic, when the
Advisor staff rcquestcd more information from
the user, Advisor received a blind carbon copy of
that request. Bccausc the message was from
Advisor, it did not go into advisor.opcn. instead
it went to advisor.trail and to the relevant
subject-specific bboard. Another cxampic was in
the processing of contributions from Advisor
helpers. A heipcr would see a question on some
topical bboard. By choosing the “Reply to
Readers” option (which prepends “Re:” to the
same subject line as the user’s, initial post), the
helper sent the answer, not to the user, but
directly back to that subject-specific bboard. Mail :
from hcipers never went into advisor.open, but
only to some topic-oricntcd bboard. And when a
final answer was sent to the user, the blind carbon
receipt once again bypassed advisor.opcn and
ended up on advisor.traii and the correct topical
bboard. The Advisor staff member would remove
the question from advisor.opcn and append to it
the cbpy of the answer. These question-answer
pairs went to an advisor.qa bboard, which acted
as a repository of useful past work.

To summarize: the Advisor star answered
questions from advisor.opcn as they wcrc able.
They kept an eye on the rclcvant subject-specific
bboards for help with the difficult problems.
Having coiiectcd the information from the hcipers,
the Advisors sent poiishcd answers back to the
users. As far as the users could see, they had sent
mail to Advisor and rcccivcd an answer from
Advisor. The fact that there was additional
internal consultation was kept behind the sccncs.

Other Consulting Venues

Though Advisor is designed to prcscrvc the scmi-
confidcntiaiity of’ a user’s mail, the Andrew
Support Group also explored publicly rcadablc
bboards for asking questions and rccciving hcip.
The staff thought that thcrc were many kinds of
qucrics that a user would be willing to put
forward in public. if other users could scc thcsc

questions asked and answered, they might not
need quite so much assistance from Advisor. Two
bboards were crcatcd: andrew.@nts and
andrew.gripes. The former is a free-market of
user-contributed advice. It serves that purpose
reasonably well. The iattcr was lntendcd as an
ofliciai information channel parallel to Advisor
mail. That is, the Advisor staff would monitor
andrew.gripes, get correct answers and post them
back to the user and to the bboard. Though this
was the clearly stated intention of the bboard (the
welcoming subscription post spelled it out in plain
English), within a week of its inception,
andrew.gripes had become a free-for-all of
misinformation, ad hominem argument, and
general rudeness. The Andrew Support Group
has given up treating andrew.gripes as a service
rcsponsibiiity, though they monitor it for
questions about Academic Computing policy.
Andrcw.gripcs continues to be a heavily
subscribed and apparently popular forum for the
hackers and the developers.

EvaIuation of Advisor I

The key feature of the first Advisor niechanism
was the automatic filing of messages into subjcct-
specific bboards. The positive efi’ect of this was
two-fold. First, messages came to the immediate
attention of the other technical groups. Often, the
Advisor staff found that someone in another
group had already answered the question before
.Advisor had even looked at it. This kind of
proactive assistance was extremely appreciated.
Second, &cause requests for more information
and final answers passed back to the subjcct-
specific bboards, the other groups could provide
problem-solving advice and assure technical
accuracy.

However, the negative effects outwcighcd the
positive. First, poorly phrased questions from the
users led to many “misclassifications.” The
message liiing algorithm worked quite wcil, but so
many subject lines were virtually contcnticss, c.g.,
“Hcip!,” that far too many messages ended up on
advisor.misc. The authors estimate that ciosc to
fifty percent of ail mail to Advisor was fiicd into
advisormisc. Without better characterization of
the message’s content in the subject iinc, the
Advisor star wcrc helpless to get the right mail to
the right partics. The Advisor dcsigncrs
cnnsidcred the possibility of also searching the
body of a mcssagc for sort keys, but the filtering
ianguagc was not powerful enough to support
free-text information retrieval tcchniqucs.
Advisor settled for pattern matching on the
subject iinc, rather than surer too many faisc
keyword hits.

Second, with every question going to a subjcct-
specilic bboard, the Advisor hcipcrs had no easy

31.1

way to distinguish between the questions the
Advisor staff knew how to answer and those they
didn’t. Hcncc, they wasted time answering some
questions unncccssarily and ncglcctcd other
questions for which help really was rcquircd. In
rctrospcct it seems like a truism, but actual use of
the mechanism vividly showed that coopcrativc
work disintegrates if what is expected and from
whom are not clearly articulated. Electronic
methods only exacerbate the problem of undefined
cxpcctations.

Third, bccausc every blind carbon from Advisor
and cvcry message from an Advisor helper also
went to the subject-specific bboards, these soon
got loo cluttered to be of much use. On the one
hand, hclpcrs got tired of wading through them.
On the other hand, Advisor had no way to show
a message and all the replies to it in a single
chain, so it was sometimes very hard to find the
answers that were already available. Thcrc is
nothing so deadly to cooperation as seeming to
ignore another’s cllbrts. Despite Advisor’s best
intentions, this problem appeared far too often.

Advisor II

In the current version of the Advisor system, the
only automatic sorting of incoming mail is by the
day it arrives. Mail goes into one of
advisor.inbox.monday, . tuesday, etc. Student
Advisors are each responsible for a particular
day’s worth of Advisor mail. They handle all that
they can -- which is most of the mcssagcs -- and
then cross-post the tough questions on topic-
oriented bboards with names like
“advisor.helpbox.mai[.” These “helpboxes” arc
very similar to the “magazines” described above --
they are, in fact,‘ magazines compiled by the
Advisor staff of just those questions that require
the help of some other group to answer. The
technical stars subscribe to appropriate helpboxcs
and to the parent bboard, advisor.helpbox. Posts
to the parent bboard notify Advisor hclpcrs of the
creation of a new helpbox, give a synopsis of its
purpose, and invite them to subscribe. All this is
done automatically, via the folder announcements,
as described above.

In addition to the helpboxcs, there arc
advisor.questions and advisor.trail, for
rudimentary measurement and tracking,
advisor.outbox, for question-answer pairs, and
advisor.discuss, for mcta-Advisor debate and
general Advisor information. (Figure 13). Some
people in other organizations subscribe to these
ancillary bboards to get a sense of how things
“feel” in the Andrew world. Advisor wclcomcs
such observers, especially to the extent that they
arc able to influence rcsourcc allocation in behalf
of Advisor’s work.

Evaluation of Advisor II

By putting human intelligence to work at the
heart of the system, the Advisor designers solved
in one stroke scvcral of the probicms mcntioncd
above. First, Advisor can support a far more
line-graincd suite of hclpboxcs than it could wilh
automatic filing. Poorly phrased subject lines are
less of a concern because humans read the mail
and digest its contents before passing it to a
topical bboard. Second, when an Advisor staK
member puts a question on a helpbox bboard,
everyone knows that this means that help is
gcnuincly needed. Third, bccausc clutter does not
automatically accumulate in the helpboxes, these
have become “high-content” bboards that the
programmers and administrators feel arc worth
reading regularly. The payoff for Advisor is a
much more reliable information resource. And
just in case there are a number of items pending
on a given helpbox, the Advisor now has a “Show
Related Messages” option which puts a marker
beside all the messages in a given reply-chain.
Advisor rarely misses a helper’s contribution in
the new scheme.

In summary, though the new scheme lacks the
proactive help and the quality assurance that was
evident in Advisor I, the Advisor staff feels that
they arc better equipped to handle the load than
before. Currently, Advisor receives an average of
30 messages each day. Note that these are new
requests from users; the total number of messages
that pass through the Advisor system, including
help from Advisor hclpcrs, requests for more
information, and rcplics to users is close to 100
messages per day. The student Advisors do an
admirable job of performing triage on incoming
mail. Fulltime consultants now function much
more as Advisor supervisors, taking areas of
technical responsibility, expediting helpbox
requests, and insuring that the answers that go
out from Advisor arc timely and accurate. In
sum, mcssagcs now filter up “manually” through
diffcrcnt levels of expertise: the simplest questions
are answered by the students, the harder ones are
answcrcd by the fulltime consultants, and the
hardest arc tackled by the programmers and
administrators themselves. At each level, humans
must work diligently and efficiently to minimize
time-delays inhcrcnt in the system. But all partics
involved feel that the Advisor scheme focuses and
streamlines their cllbrts.

Advisor’.g Future

The designers of Advisor have made a tactical
rctrcat from the more automated porccssing of
Advisor I. To begin with, they have had to solve
new problems which rcquircd them to USC other
tools in the AMS kit. For cxamplc, sorting
Advisor mail by day crcatcs the problem of how

312

Monday’s Advisor continues a dialog with a user
on Tuesday, without getting in the way of the
Tuesday Advisor. This problem is solved by the
use of compound commands, as described earlier.
Advisor now has a suite of customized message
scnding/rcplying commands, one for each day of
the week. (Figure 14). Thcsc commands, which
are on the menu and bound to keys. insert a
special message header on the outgoing mail. That
mail, and all mail in reply to it, get sorted into the
correct day’s inbox by virtue of that hcadcr. So
even though the followup reply from the user
comes in on Wednesday, it still goes to the
Monday inbox, where Monday’s Advisor is
waiting for it. The ASG is capturing other
complicated, but repetitive, Advisor actions as
compound commands.

The Andrew Support Group has also begun to
connect the Advisor system to other help groups
on campus. The most mature example to date is
a bridge between the advisor.helphox.datacomm
bboard and a suite of bboards attached to a
special uscrid, d&m, belonging to the Network
and Communications group. Rather than have
these folks subscribe to the Advisor helpbox as a
second source of input to their group, the Advisor
designers created. a “hot link” between the two
groups. When Advisor puts mail into its
datacomm helpbox, it is automatically rcscnt to
dcOm with a special header. When someone in
Data Communications replies to that mail, by
virtue of that header, it comes back directly to
Advisor’s helpbox, just where the Advisor expects
to find it. There are similar links to the group
that handles public cluster issues and to a Student
Advisory Committee for policy matters. The
ASG plans to provide additional hot links to
Advisor-like systems that they’ve already cxportcd
for academic USC. In this way, the ASG hopes to
help these groups become largely support
themselves, while still providing a fast channel by
which their support stair can communicate with
the Advisor staff. It is our bclicf that a large part
of Academic Computing’s future role is to cnablc
distributed support.

Finally, Advisor still handles a huge load of
routine items like rcqucsts for more disk quota.
These are matters that rarely require attention
from the Advisor staff, save to pass them along to
a systems administrator with an acknowlcdgmcnt
of receipt. It would be nice if the students did not
have to do very much to handle such requests.
Thus, the plans for Advisor include judiciously
reintroducing certain automatic mail forwarding
fcaturcs. IHowcvcr, bcforc doing so, the ASG
plans to cxplorc two arcas of dcvclopmcnt, the
results of which should fend o[T the problems
encountcrcd in the days of Advisor I.

The tirst work item is to build of a suite of

Advisor-rcqucst templates. Advisor has long used
boilcrplatcs for sending answers back to the users.
But rather than leaving it wholly up to the user
what’his mail to Advisor should look like, Advisor
will also provide various forms that are prc-
addressed, pre-titled, and internally organized into
fields, some of which have the content
dynamically supplied. The possibilities arc almost
endless for creating highly sophisticatctl forms
using multi-media objects.

Recently, the AMS Group made available a much
more powerful and easy-to-use extension language
called “FLAMES” (Filtering Language for the
Andrew MEssage System) and a set of common
extensions in the FLAMES library. The language
is essentially Common LISP, with special
primitives for manipulating the AMS database.
Thus, the second work item is to acquire
FLAMES expertise in the ASG. FLAMES will
make it possible to create very powerful mail-
handling routines that process the liclds in the
various Advisor-request tcmplatcs. With semi-
structured input from the users and LISP-based
filters to process it, the future for automatic
message handling looks promising again.

For example, by the time this paper is published,
the ASG expects to have a prototype quota-
request form. This form will have an appropriate
subject line, and will contain dynamically-
generated information about current disk USC, a
stock message from Advisor about current politics
for quota, and some fields to complctc in that
elicit the reasons for the increase. When Advisor
gets this mail, a canned acknowlcdgmcnt will go
to the user automatically, and the form will be
sent to the person who handles quota incrcascs.
The mcssagc will now have an additional header
so that both the user and Advisor arc notified
when the user’s quota has been increased, Advisor
is also notified. The request and the rcccipt can
then bc saved, if statistics on disk quota rcqucst
handling are desired, or it can bc dclctcd. The
Advisor developers hope to follow this prototype
with templates and parsers for bug reports,
rcqucsts for new features, and the like.

Another area of devclopmcnt for the ASG is to
continue work thcy’vc begun on non-workstation
intcrfaccs to Advisor. Student Advisors arc
particularly eager to do their advising from low-
end machines in their rooms. Currently the group
has one sample interface, using an unsupported
package that runs under the Emacs text editor.
Of course, thcrc are several AMS interfaces that
run on low-end machines, but only the flagship
Mcssagcs interface, on workstations, has all the
customization features that Advisor now dcpcnds
on.

Finally, it should be noted that the Advisor stalT,

313

who di) not view themsclvcs as “hackers”, are
nwcthclcss ahlc to develop customized compound
commands, hot links between support systems,
AJvisor-tcmplatcs, and alternative interfaces
indcpcndcntly, in large mcasurc, of the AMS
dc\.clopcrs. This seems to bc clear cvidcncc of the
maturity, power, and flexibility of the Andrew
Mcssngc System.

Academic Uses

l The Andrew Mcssagc System is heavily used by
aCadCmiC courses at Carnegie Mellon. As of the
spring of 1988, thcrc were over 100 academic
bboards in USC by more than a dozen diffcrcnt
dcpartmcnts, including relatively non-
computerized departments such as English,
History, and Architecture. The extent and nature
of its use varies substantially from one class to
another. In some classes, it is used simply to post
assignments and other “oficial” notices. In other
classes, however, substantial portions of the class
discussion takes place on the class hboards

(Figure IS). In a few classes, a significant portion
of the grade has been based on bboard
participation.

In addition, it is becoming increasingly common
for classes to take advantage of the protection
mechanisms to create several different types of
bulletin boards. Quite a few courses now havc$n
“admin” bboard, which any student can post ‘to
but only the teachers and teaching assistants can
read. This provides an easy way for students to
contest grades, ask questions without fear of
looking “stupid” in front of their peers, etc., and
without requiring an ollice appointment with the
professor himself. As such, the mechanism is
popular among the teaching staff as a time-saving
feature. In at least one case, private bboards have
been used within an academic course, as
competing teams in a Software Engineering course
discussed their designs independently, using both
private per-team bboards and larger whole-class
bboards, whichever seemed more appropriate for
a given discussion (Figure 16).

Two particular instances of course-related
bboards warrant ,detailcd description. The first is
a system for supporting the two-semester
sequence, “Fundamental Structures of Computer
Science, 1 and II.” Approximately 300 students
per semester are enrolled in one or the other
course. In additipn, the classes are taught on the
Andrew system. To provide bcttcr scrvicc for the
students, the ASG, with the cooperation of the
instructors, teaching assistants, and the AMS
group, created a suite of bboards for the two
classes. The initial bboards created wcrc:

academic.cs.2 11: The. “root” bull&in board for
the class, on which sub-bboards wcrc

announced automatically.

academic.cs.211 .announce: A bulletin board which
the students could read but only the staff
could post on, used to announce due dates,
changes to assignments, and other
important news.

academic.cs.211 .help: An open bboard for
students and course staff, where students
were encouraged to post questions about
the course or its USC of Andrew facilities.
Students were encouraged to assist each
other on this bboard, so that an answer
might be provided either by the staff or by
another student.

academic.cs.21 l.discuss: Another open bboard,
for discussion of technical issues germane
to the content of the course.

academic.cs.2 11 .admin: A private bboard,
readable only by the course staff, Students
could post on this bboard in confidence
simply by sending mail to “CS-21 I”

The teaching star went on to create two
additional bboards,
academic.cs.2ll.admin.handled, for internal
tracking, and academic.cs.2ll.discuss.grades, “for
people who wish to complain [publicly] about the
grading system of the homework, tests, etc.”

The second example is an Advisor-like system for
the Computer Skills Workshop (CSW). Each fall,
most of the 1200 or so entering students take
CSW as their introduction to the computing
facilities at Carnegie Mellon. As part of the
cdurse, all students subscribe to acadernic.csw, the
top level bboard for the course.

In the fall of 1987, the Advisor stafT tried an
experiment. They crcatcd another Advisor
system, called “CSW-Advisor” solely for the
support of the CSW class. (IIistorical nQt(s: CSW-

Advisor was actually a beta-test of Advisor II. Much of the
organization of the currenl Advisor was tried out here.) ’
CSW students were told to address questions
about Andrew to CSW-Advisor. In case they
forgot and sent mail to Advisor, the Advisor
system trapped their inail and sent it over to
CSW-Advisor. People who were ncithcr CSW,
nor part of the CSW staff, nor CSW-hclpcrs had ’
their mail to CSW-Advisor automatically routed
over to Advisor. An initial suite of private
bboards under “csw-advisor” included bboards
for discussions among the course staff, an inbox
and outbox for tracking help mcssagcs from
students, and a suite of “help” bboards much like
the current advisor “helpboxes”.

In the spring semcstcr, the CSW students got into

314

the act and created a number of public bboards
under academic.csw, dcdicatcd to topics ranging
from the “CMU work ethic,” to undcragc
drinking on campus, to the desirability of DOD-
funded research institutes on campus.

Conclusions And Future Work

The developers of the Andrew Message System
did not set out to investigate tools for coopcrativc
work per se, but simply to build a better system
for electronic communication. Howcvcr, they
gradually found themselves drawn in to the issues
germane to electronically mediated group work.
Much of the evolution of the system has been
driven by the requirements of the user groups
described above. An even larger part of the
future plans for the AMS are geared towards
supporting such work.

The real hope is that providing a higher level of
functionality in a widely available message system
will further raise the level of consciousness and
expectations regarding electronic communication
in genera!. One quickly gets used to the kinds of
features the AMS provides, however surprising
and delightful they might seem at !irst, and it
stems inevitable that people will, for example,
come to regard integrated graphical objects as a
basic and necessary part of electronic mail. Once
more people have done so, the next step in the
future of electronic communication may bc easier
to discern.

Acknowledgments

The Andrew Message System was designed and
implemented by Nathaniel Borenstcin, Craig
Everhart, and Jonathan Rosenberg. Substantial
additional work was done by Adam Staller, Mark
Chance, Bob Glickstein, Sue Pawlowski, and
Aaron Wohl. The Advisor system was developed
by Chris Thyberg, Pierctte Maniago, Wallace
Colyer, and a sta!T of student Advisors. Andrew
is a big project, and the AMS could not exist
without the work of dozens of people who cannot

315

. .

be named hcrc due to snace limitations. We
would, however, be remiss if WC did not
acknowledge the unique vision of Jim Morris,
without whom Andrew as WC know it could ncvcr
have become a reality.

Special thanks are also due to Chris Haas, Jim
Morris, and Adam Staller for their comments on
earlier drafts of this paper.

References

[I] Morris, et a!., “Andrew: A Distributed
Personal Computing Environment”,
Communications of the UCM, March, 1986.

[2] Morris, James H., “‘Make or Take’ Decisions
in Andrew”, Proceedings of the USENIX
Technical Conference, February, 1988.

[3] Howard, John. H., “An Overview of the
Andrew File System”, Proceedin& of the
USENIX Technical Conference, February, 1988.

[4] Kazar, Michael Leon, “Synchronization and
Caching Issues in the Andrew File System”,
Proceedings of the USENIX Technical Cocference,
February, 1988.

[5] Palay, et al., “The Andrew Toolkit: an
Ovcrvicw”, Prociedings of the USENIX Technical
Conference, February, 1988. r 1

[6] Rosenberg, et al., “An Overview of the
Andrew Message System”, Proceedings of
SIGCOMM ‘87 Workshop, Frontiers in Computer
Communications Technology, Stowc, Vermont,
August, 1987.

[7] Borcnstein, et al., “A Multi-media Message
System for Andrew”, Proceedings of the USENIX
Technical Conference,. February, 1988.

[8] Malone, et al., “Intelligent Information-
Sharing Systems”, Communications of the ACM,
May, 1987.

Figure 1: A screen snapshot showing a bug report about the message
system itself, in which the user presented ;I screen snapshot within the bug
report as evidence of the bug:

.Bob

PS This extemidlybound mcrr~gc has spcclal formattIng Information.

Remove formatting & send (for non-Andrew readen

Send with formatting (for Andrew readers

Figure 2: A screen image of a use of a clipped screen dump as virtually
an entire a bug report. In this case, the picture allowed the user to almost
entirely avoid any prose description of the bug, yet made the problem
perfectly clear.

316

Figure 3: Initial frame of an animation explaining how netnews is
processed at CMU.

Figure 4: One of the intermediate frames of the same animation

317

Figure 5: Final frame of the same animation

Figure 6: A vote message was used to settle a long-simmering dispute
over a bottled water dispenser at CMU:

318

Figure 7: The results of the water cooler vote are announced. Later in
the announcement there is an animation of a flamingo drinking water, but
this didn’t translate well to paper.

Ycs,drlnk less VM Don1 Care NO OUlW
17 13 6 2 5

TOTAL 43 1 VOTING 98 1

of m0se hung
FlJr 78.95% 30 -

Against 526% 2 I
Don’t Care 15.79% 6 w

Ouw fbsponm:

Figure 8: The university’s Public Relations Office conducts a vc$.

319

Figure 9: The vote results are announced, and the university gets a clear
answer.

Figure 10: A user trying to cope with a bug soli$ts advice regarding the
best course of action from the set of developers who might possibly know
how to deal with his problem.

Walt fortbe transition I’m performIng.

Figure 11: A game of “dictionary” is played by electronic mail.

320

Figure 12: The results of the dictionary game are announced.

c Subaric Nichols.

Name I round: i
I

tpolnt.
-4

2
0
0
0
3
0
1
1
0
1
0
1

---.L

__-
5COM

4
2
0
0
0
3
0
1
I
0
1
0
I
1 --

Figure 13: A partial listing of the “advisor” suite of bboards.

ssages Version 6.18-N-2 per,

321

Figure 14: The customized menus used by the advisor staff.

j j

322

Figure 16: A message on a private bulletin board for a course in which
the students worked in competitive teams (“wed” is the Wednesday group,
one of the three teams).

323

